Skip to main content

Advertisement

Log in

Chitin and Chitosan Based Composites for Energy and Environmental Applications: A Review

  • Review Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Chitin and chitosan are the second most abundant natural biopolymers in the curst of the earth. These polysaccharide biopolymers have a long linear chain-like structure connected with β-d glucosidic linkage with the functionalizable surface groups. Because of the structural features, these biomaterials exhibit unique physical, chemical, mechanical and optical properties, which contributed to the tunable and outstanding properties such as low density, high porosity, renewability, natural biodegradability, and environmental friendliness, etc. Chitin was synthesized via mechanical, chemical, chemo-mechanical, and eco-friendly biological methods and the deacetylation of the synthesized chitin carried for the preparation of chitosan. With the chemical modification used for the preparation of chitosan, there occurs some minor change in characteristics; however, most of the properties were relatable due to major similarities in the microstructures. The inherent antibacterial, non-toxic, and biodegradable properties with the ease of processibility of both polymer has the potential to become a successful alternative to its synthetic counterparts for energy and environmental applications. However, the poor mechanical and thermal properties in comparison to the conventional alternatives have restricted its widespread applications. This review addresses various areas such as extraction techniques of chitin and synthesis of chitosan, discussion of the common characteristics of both polymers together such as crystallinity, thermal properties, mechanical properties, hydrophilicity, and surface charge. Moreover, this review paper also addresses the common functionalization techniques for both polymer and the use of both unmodified chitin and chitosan along with their derivatives in environmental and energy applications such as air pollution, heavy metal adsorption, dye adsorption, biosensors, EMI shielding, fuel cell, solar cell, lithium-ion batteries, and biofuels.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7 
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Boulaiche, W., Hamdi, B., Trari, M.: Removal of heavy metals by chitin: equilibrium, kinetic and thermodynamic studies. Appl. Water Sci. (2019). https://doi.org/10.1007/s13201-019-0926-8

    Article  Google Scholar 

  2. Li, H., Wang, Z., Zhang, H., Pan, Z.: Nanoporous PLA/(chitosan nanoparticle) composite fibrous membranes with excellent air filtration and antibacterial performance. Polymers (Basel) (2018). https://doi.org/10.3390/polym10101085

    Article  Google Scholar 

  3. Gopi, S., Kargl, R., Kleinschek, K.S., Pius, A., Thomas, S.: Chitin nanowhisker—inspired electrospun PVDF membrane for enhanced oil-water separation. J. Environ. Manag. (2018). https://doi.org/10.1016/j.jenvman.2018.09.039

    Article  Google Scholar 

  4. Paulino, A.T., Simionato, J.I., Garcia, J.C., Nozaki, J.: Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr. Polym. (2006). https://doi.org/10.1016/j.carbpol.2005.10.032

    Article  Google Scholar 

  5. Liu, W., Liu, K., Zhu, L., Li, W., Liu, K., Wen, W., Liu, M., Li, H., Zhou, C., Luo, B.: Liquid crystalline and rheological properties of chitin whiskers with different chemical structures and chargeability. Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.04.158

    Article  Google Scholar 

  6. Musarurwa, H., Tavengwa, N.T.: Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments. Carbohydr. Ploym. (2020). https://doi.org/10.1016/j.carbpol.2020.116142

    Article  Google Scholar 

  7. Nikolov, S., Fabritius, H., Petrov, M., Friák, M., Lymperakis, L., Sachs, C., Raabe, D., Neugebauer, J.: Robustness and optimal use of design principles of arthropod exoskeletons studied by ab initio-based multiscale simulations. J. Mech. Behav. Biomed. Mater. (2011). https://doi.org/10.1016/j.jmbbm.2010.09.015

    Article  Google Scholar 

  8. Anitha, A., Sowmya, S., Kumar, P.T.S., Deepthi, S., Chennazhi, K.P., Ehrlich, H., Tsurkan, M., Jayakumar, R.: Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci. 39(9), 1644–1667 (2014)

    Article  Google Scholar 

  9. Singh, P., Nagendran, R.: A comparative study of sorption of chromium (III) onto chitin and chitosan. Appl. Water Sci. (2016). https://doi.org/10.1007/s13201-014-0218-2

    Article  Google Scholar 

  10. El Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., Lahsini, A.: Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Marcomol. 120, 1181–1189 (2018)

    Article  Google Scholar 

  11. Abdou, E.S., Nagy, K.S.A., Elsabee, M.Z.: Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol. (2008). https://doi.org/10.1016/j.biortech.2007.01.051

    Article  Google Scholar 

  12. Gonil, P., Sajomsang, W.: Applications of magnetic resonance spectroscopy to chitin from insect cuticles. Int. J. Biol. Marcomol. 51(4), 514–522 (2012)

    Article  Google Scholar 

  13. Abdulkarim, A., Isa, M.T., Abdulsalam, S., Muhammad, A.J., Ameh, A.O.: Extraction and characterization of chitin and chitosan from mussel shell. Civ. Env. Res. (2013)

  14. Arbia, W., Adour, L., Amrane, A., Lounici, H.: Optimization of medium composition for enhanced chitin extraction from Parapenaeus longirostris by Lactobacillus helveticus using response surface methodology. Food Hydrocoll. (2013). https://doi.org/10.1016/j.foodhyd.2012.10.025

    Article  Google Scholar 

  15. Mahdy Samar, M., El-Kalyoubi, M.H., Khalaf, M.M., Abd El-Razik, M.M.: Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Ann. Agric. Sci. (2013). https://doi.org/10.1016/j.aoas.2013.01.006

    Article  Google Scholar 

  16. Abdelmalek, B.E., Sila, A., Haddar, A., Bougatef, A., Ayadi, M.A.: β-Chitin and chitosan from squid gladius: biological activities of chitosan and its application as clarifying agent for apple juice. Int. J. Biol. Macromol. (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.107

    Article  Google Scholar 

  17. Ifuku, S.: Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19(11), 18367–18380 (2014)

    Article  Google Scholar 

  18. Kumari, S., Rath, P.K.: Extraction and characterization of chitin and chitosan from (Labeo rohit) Fish Scales. Procedia Mater. Sci. (2014). https://doi.org/10.1016/j.mspro.2014.07.062

    Article  Google Scholar 

  19. Khalaf, N., Ahamad, T., Naushad, M., Al-hokbany, N., Al-Saeedi, S.I., Almotairi, S., Alshehri, S.M.: Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor. Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.193

    Article  Google Scholar 

  20. Aljawish, A., Chevalot, I., Jasniewski, J., Scher, J., Muniglia, L.: Enzymatic synthesis of chitosan derivatives and their potential applications. J. Mol. Catal. B 112, 25–39 (2015)

    Article  Google Scholar 

  21. Rinaudo, M.: Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31(7), 603–632 (2006)

    Article  Google Scholar 

  22. Ding, F., Qian, X., Zhang, Q., Wu, H., Liu, Y., Xiao, L., Deng, H., Du, Y., Shi, X.: Electrochemically induced reversible formation of carboxymethyl chitin hydrogel and tunable protein release. New J. Chem. (2015). https://doi.org/10.1039/c4nj01704h

    Article  Google Scholar 

  23. Sahariah, P., Másson, M.: Antimicrobial chitosan and chitosan derivatives: a review of the structure-activity relationship. Biomacromol 18(11), 3846–3868 (2017)

    Article  Google Scholar 

  24. Surat, M.A., Jauhari, S., Desak, K.R.: A brief review: microwave assisted organic reaction. Appl. Sci. Res. 4(1), 645–661 (2012)

    Google Scholar 

  25. Safavy, A., Raisch, K.P., Mantena, S., Sanford, L.L., Sham, S.W., Krishna, N.R., Bonner, J.A.: Design and development of water-soluble curcumin conjugates as potential anticancer agents. J. Med. Chem. (2007). https://doi.org/10.1021/jm700988f

    Article  Google Scholar 

  26. El Knidri, H., El Khalfaouy, R., Laajeb, A., Addaou, A., Lahsini, A.: Eco-friendly extraction and characterization of chitin and chitosan from the shrimp shell waste via microwave irradiation. Process Saf. Environ. Prot. (2016). https://doi.org/10.1016/j.psep.2016.09.020

    Article  Google Scholar 

  27. Su, Z., Zhang, M., Lu, Z., Song, S., Zhao, Y., Hao, Y.: Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability. Cellulose (2018). https://doi.org/10.1007/s10570-018-1696-4

    Article  Google Scholar 

  28. Podgórski, A., Bałazy, A., Gradoń, L.: Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci. (2006). https://doi.org/10.1016/j.ces.2006.07.022

    Article  Google Scholar 

  29. Gopi, S., Pius, A., Kargl, R., Kleinschek, K.S., Thomas, S.: Fabrication of cellulose acetate/chitosan blend films as efficient adsorbent for anionic water pollutants. Polym. Bull. (2019). https://doi.org/10.1007/s00289-018-2467-y

    Article  Google Scholar 

  30. de Alvarenga, E.S.: Characterization and properties of chitosan. In: Biotechnology of Biopolymers (2011). https://doi.org/10.5772/17020

  31. Kaya, M., Salaberria, A.M., Mujtaba, M., Labidi, J., Baran, T., Mulercikas, P., Duman, F.: An inclusive physicochemical comparison of natural and synthetic chitin films. Int. J. Biol. Macromol. (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.108

    Article  Google Scholar 

  32. Leceta, I., Guerrero, P., De La Caba, K.: Functional properties of chitosan-based films. Carbohydr. Polym. 93, 339–346 (2013)

    Article  Google Scholar 

  33. Chang, S.H., Lin, H.T.V., Wu, G.J., Tsai, G.J.: pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Carbohydr. Polym. (2015). https://doi.org/10.1016/j.carbpol.2015.07.072

    Article  Google Scholar 

  34. Ortona, O., D’Errico, G., Mangiapia, G., Ciccarelli, D.: The aggregative behavior of hydrophobically modified chitosans with high substitution degree in aqueous solution. Carbohydr. Polym. (2008). https://doi.org/10.1016/j.carbpol.2008.01.009

    Article  Google Scholar 

  35. Kato, Y., Kaminaga, J., Matsuo, R., Isogai, A.: TEMPO-mediated oxidation of chitin, regenerated chitin and N-acetylated chitosan. Carbohydr. Polym. (2004). https://doi.org/10.1016/j.carbpol.2004.08.011

    Article  Google Scholar 

  36. Sun, X., Zhu, J., Gu, Q., You, Y.: Surface-modified chitin by TEMPO-mediated oxidation and adsorption of Cd(II). Colloids Surf. A. (2018). https://doi.org/10.1016/j.colsurfa.2018.06.041

    Article  Google Scholar 

  37. Botelho da Silva, S., Krolicka, M., van den Broek, L.A.M., Frissen, A.E., Boeriu, C.G.: Water-soluble chitosan derivatives and pH-responsive hydrogels by selective C-6 oxidation mediated by TEMPO-laccase redox system. Carbohydr. Polym. (2018). https://doi.org/10.1016/j.carbpol.2018.01.050

    Article  Google Scholar 

  38. Borsagli, F.G.L.M., Borsagli, A.: Chemically modified chitosan bio-sorbents for the competitive complexation of heavy metals ions: a potential model for the treatment of wastewaters and industrial spills. J. Polym. Environ. (2019). https://doi.org/10.1007/s10924-019-01449-4

    Article  Google Scholar 

  39. Kurita, K., Mori, S., Nishiyama, Y., Harata, M.: N-alkylation of chitin and some characteristics of the novel derivatives. Polym. Bull. (2002). https://doi.org/10.1007/s00289-002-0015-1

    Article  Google Scholar 

  40. Liu, W., Sun, S.J., Zhang, X., Yao, K.D.: Self-aggregation behavior of alkylated chitosan and its effect on the release of a hydrophobic drug. J. Biomater. Sci. Polym. Ed. (2003). https://doi.org/10.1163/156856203768366567

    Article  Google Scholar 

  41. Zou, Y., Khor, E.: Preparation of sulfated-chitins under homogeneous conditions. Carbohydr. Polym. (2009). https://doi.org/10.1016/j.carbpol.2009.01.031

    Article  Google Scholar 

  42. Sabar, S., Abdul Aziz, H., Yusof, N.H., Subramaniam, S., Foo, K.Y., Wilson, L.D., Lee, H.K.: Preparation of sulfonated chitosan for enhanced adsorption of methylene blue from aqueous solution. React. Funct. Polym. (2020). https://doi.org/10.1016/j.reactfunctpolym.2020.104584

    Article  Google Scholar 

  43. Huang, J., Liu, Y., Yang, L., Zhou, F.: Synthesis of sulfonated chitosan and its antibiofilm formation activity against E. coli and S. aureus. Int. J. Biol. Macromol. (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.079

    Article  Google Scholar 

  44. Khanal, D.R., Okamoto, Y., Miyatake, K., Shinobu, T., Shigemasa, Y., Tokura, S., Minami, S.: Protective effects of phosphated chitin (P-chitin) in a mice model of acute respiratory distress syndrome (ARDS). Carbohydr. Polym. (2001). https://doi.org/10.1016/S0144-8617(00)00216-2

    Article  Google Scholar 

  45. Ramasamy, P., Subhapradha, N., Shanmugam, V., Shanmugam, A.: Extraction, characterization and antioxidant property of chitosan from cuttlebone Sepia kobiensis (Hoyle 1885). Int. J. Biol. Macromol. (2014). https://doi.org/10.1016/j.ijbiomac.2013.12.008

    Article  Google Scholar 

  46. Kahu, S.S., Shekhawat, A., Saravanan, D., Jugade, R.M.: Two fold modified chitosan for enhanced adsorption of hexavalent chromium from simulated wastewater and industrial effluents. Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2016.03.041

    Article  Google Scholar 

  47. Shanmugam, A., Kathiresan, K., Nayak, L.: Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol. Rep. (2016). https://doi.org/10.1016/j.btre.2015.10.007

    Article  Google Scholar 

  48. Sinha, V.R., Singla, A.K., Wadhawan, S., Kaushik, R., Kumria, R., Bansal, K., Dhawan, S.: Chitosan microspheres as a potential carrier for drugs. Int. J. Pharm. 274(1–2), 1–33 (2004)

    Google Scholar 

  49. Chen, C., Li, D., Yano, H., Abe, K.: Bioinspired hydrogels: quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation. Carbohydr. Polym. (2019). https://doi.org/10.1016/j.carbpol.2018.12.007

    Article  Google Scholar 

  50. Chen, A.H., Yang, C.Y., Chen, C.Y., Chen, C.Y., Chen, C.W.: The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium. J. Hazard. Mater. (2009). https://doi.org/10.1016/j.jhazmat.2008.07.073

    Article  Google Scholar 

  51. Zhou, L., Shang, C., Liu, Z., Huang, G., Adesina, A.A.: Selective adsorption of uranium(VI) from aqueous solutions using the ion-imprinted magnetic chitosan resins. J. Colloid Interface Sci. (2012). https://doi.org/10.1016/j.jcis.2011.09.069

    Article  Google Scholar 

  52. Hanh, T.T., Huy, H.T., Hien, N.Q.: Pre-irradiation grafting of acrylonitrile onto chitin for adsorption of arsenic in water. Radiat. Phys. Chem. (2015). https://doi.org/10.1016/j.radphyschem.2014.08.004

    Article  Google Scholar 

  53. Ifuku, S., Iwasaki, M., Morimoto, M., Saimoto, H.: Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water. Carbohydr. Polym. (2012). https://doi.org/10.1016/j.carbpol.2012.05.087

    Article  Google Scholar 

  54. Kyzas, G.Z., Bikiaris, D.N., Lazaridis, N.K.: Low-swelling chitosan derivatives as biosorbents for basic dyes. Langmuir (2008). https://doi.org/10.1021/la7039064

    Article  Google Scholar 

  55. Al-Karawi, A.J.M., Al-Qaisi, Z.H.J., Abdullah, H.I., Al-Mokaram, A.M.A., Al-Heetimi, D.T.A.: Synthesis, characterization of acrylamide grafted chitosan and its use in removal of copper(II) ions from water. Carbohydr. Polym. (2011). https://doi.org/10.1016/j.carbpol.2010.08.017

    Article  Google Scholar 

  56. Wang, Z., Yan, F., Pei, H., Yan, K., Cui, Z., He, B., Fang, K., Li, J.: Environmentally-friendly halloysite nanotubes@chitosan/polyvinyl alcohol/non-woven fabric hybrid membranes with a uniform hierarchical porous structure for air filtration. J. Membr. Sci. (2020). https://doi.org/10.1016/j.memsci.2019.117445

    Article  Google Scholar 

  57. Desai, K., Kit, K., Li, J., Michael Davidson, P., Zivanovic, S., Meyer, H.: Nanofibrous chitosan non-wovens for filtration applications. Polymer (Guildf) (2009). https://doi.org/10.1016/j.polymer.2009.05.058

    Article  Google Scholar 

  58. Zhang, B., Zhang, Z.G., Yan, X., Wang, X.X., Zhao, H., Guo, J., Feng, J.Y., Long, Y.Z.: Chitosan nanostructures by in situ electrospinning for high-efficiency PM2.5 capture. Nanoscale (2017). https://doi.org/10.1039/c6nr09525a

    Article  Google Scholar 

  59. Lekshmi Mohan, V., Shiva Nagendra, S.M., Maiya, M.P.: Photocatalytic degradation of gaseous toluene using self-assembled air filter based on chitosan/activated carbon/TiO2. J. Environ. Chem. Eng. (2019). https://doi.org/10.1016/j.jece.2019.103455

    Article  Google Scholar 

  60. Chen, Y.C., Liao, C.H., Shen, W.T., Su, C., Wu, Y.C., Tsai, M.H., Hsiao, S.S., Yu, K.P., Tseng, C.H.: Effective disinfection of airborne microbial contamination in hospital wards using a zero-valent nano-silver/TiO2-chitosan composite. Indoor Air (2019). https://doi.org/10.1111/ina.12543

    Article  Google Scholar 

  61. Wang, L., Zhang, C., Gao, F., Pan, G.: Needleless electrospinning for scaled-up production of ultrafine chitosan hybrid nanofibers used for air filtration. RSC Adv. (2016). https://doi.org/10.1039/c6ra24557a

    Article  Google Scholar 

  62. Ren, Y., Abbood, H.A., He, F., Peng, H., Huang, K.: Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. (2013). https://doi.org/10.1016/j.cej.2013.04.059

    Article  Google Scholar 

  63. Li, X., Zhou, H., Wu, W., Wei, S., Xu, Y., Kuang, Y.: Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites. J. Colloid Interface Sci. (2015). https://doi.org/10.1016/j.jcis.2015.02.039

    Article  Google Scholar 

  64. Zhu, Y., Hu, J., Wang, J.: Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Prog. Nucl. Energy (2014). https://doi.org/10.1016/j.pnucene.2013.12.005

    Article  Google Scholar 

  65. Gopi, S., Pius, A., Thomas, S.: Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. J. Water Process Eng. (2016). https://doi.org/10.1016/j.jwpe.2016.07.010

    Article  Google Scholar 

  66. Zhu, H.Y., Jiang, R., Xiao, L.: Adsorption of an anionic azo dye by chitosan/kaolin/γ-Fe2O3 composites. Appl. Clay Sci. (2010). https://doi.org/10.1016/j.clay.2010.02.003

    Article  Google Scholar 

  67. Darvishi Cheshmeh Soltani, R., Khataee, A.R., Safari, M., Joo, S.W.: Preparation of bio-silica/chitosan nanocomposite for adsorption of a textile dye in aqueous solutions. Int. Biodeterior. Biodegrad. (2013). https://doi.org/10.1016/j.ibiod.2013.09.004

    Article  Google Scholar 

  68. Wang, C., Yang, F., Zhang, H.: Fabrication of non-woven composite membrane by chitosan coating for resisting the adsorption of proteins and the adhesion of bacteria. Sep. Purif. Technol. (2010). https://doi.org/10.1016/j.seppur.2010.09.005

    Article  Google Scholar 

  69. Gopi, S., Balakrishnan, P., Pius, A., Thomas, S.: Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine. Carbohydr. Polym. (2017). https://doi.org/10.1016/j.carbpol.2017.02.046

    Article  Google Scholar 

  70. Davila-Rodriguez, J.L., Escobar-Barrios, V.A., Rangel-Mendez, J.R.: Removal of fluoride from drinking water by a chitin-based biocomposite in fixed-bed columns. J. Fluor. Chem. 140, 99–103 (2012). https://doi.org/10.1016/j.jfluchem.2012.05.019

    Article  Google Scholar 

  71. Karthik, R., Meenakshi, S.: Chemical modification of chitin with polypyrrole for the uptake of Pb(II) and Cd(II) ions. Int. J. Biol. Macromol. (2015). https://doi.org/10.1016/j.ijbiomac.2015.03.041

    Article  Google Scholar 

  72. Yang, R., Su, Y., Aubrecht, K.B., Wang, X., Ma, H., Grubbs, R.B., Hsiao, B.S., Chu, B.: Thiol-functionalized chitin nanofibers for As(III) adsorption. Polymer (Guildf) (2015). https://doi.org/10.1016/j.polymer.2015.01.025

    Article  Google Scholar 

  73. Santosa, S.J., Siswanta, D., Sudiono, S., Utarianingrum, R.: Chitin-humic acid hybrid as adsorbent for Cr(III) in effluent of tannery wastewater treatment. Appl. Surf. Sci. (2008). https://doi.org/10.1016/j.apsusc.2008.02.102

    Article  Google Scholar 

  74. Labidi, A., Salaberria, A.M., Fernandes, S.C.M., Labidi, J., Abderrabba, M.: Adsorption of copper on chitin-based materials: kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng. (2016). https://doi.org/10.1016/j.jtice.2016.04.030

    Article  Google Scholar 

  75. Casteleijn, M.G., Richardson, D., Parkkila, P., Granqvist, N., Urtti, A., Viitala, T.: Spin coated chitin films for biosensors and its analysis are depended on chitin-surface interactions. Colloids Surf. A (2018). https://doi.org/10.1016/j.colsurfa.2017.12.036

    Article  Google Scholar 

  76. Abu-Hani, A.F.S., Greish, Y.E., Mahmoud, S.T., Awwad, F., Ayesh, A.I.: Low-temperature and fast response H2S gas sensor using semiconducting chitosan film. Sens. Actuators B (2017). https://doi.org/10.1016/j.snb.2017.06.103

    Article  Google Scholar 

  77. Borgohain, R., Kumar Boruah, P., Baruah, S.: Heavy-metal ion sensor using chitosan capped ZnS quantum dots. Sens. Actuators B (2016). https://doi.org/10.1016/j.snb.2015.11.118

    Article  Google Scholar 

  78. Kumar, R., Rahman, H., Ranwa, S., Kumar, A., Kumar, G.: Development of cost effective metal oxide semiconductor based gas sensor over flexible chitosan/PVP blended polymeric substrate. Carbohydr. Polym. (2020). https://doi.org/10.1016/j.carbpol.2020.116213

    Article  Google Scholar 

  79. Nazari, F., Ghoreishi, S.M., Khoobi, A.: Bio-based Fe3O4/chitosan nanocomposite sensor for response surface methodology and sensitive determination of gallic acid. Int. J. Biol. Macromol. (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.205

    Article  Google Scholar 

  80. Hwang, J.H., Pathak, P., Wang, X., Rodriguez, K.L., Park, J., Cho, H.J., Lee, W.H.: A novel Fe-chitosan-coated carbon electrode sensor for in situ As(III) detection in mining wastewater and soil leachate. Sens. Actuators B (2019). https://doi.org/10.1016/j.snb.2019.05.044

    Article  Google Scholar 

  81. Wu, J., Li, H., Lai, X., Chen, Z., Zeng, X.: Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123998

    Article  Google Scholar 

  82. Dai, H., Feng, N., Li, J., Zhang, J., Li, W.: Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film. Sens. Actuators B (2019). https://doi.org/10.1016/j.snb.2018.12.056

    Article  Google Scholar 

  83. Chen, T.W., Chinnapaiyan, S., Chen, S.M., Ajmal Ali, M., Elshikh, M.S., Hossam Mahmoud, A.: Facile synthesis of copper ferrite nanoparticles with chitosan composite for high-performance electrochemical sensor. Ultrason. Sonochem. (2020). https://doi.org/10.1016/j.ultsonch.2019.104902

    Article  Google Scholar 

  84. Sadani, K., Nag, P., Mukherji, S.: LSPR based optical fiber sensor with chitosan capped gold nanoparticles on BSA for trace detection of Hg(II) in water, soil and food samples. Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.03.046

    Article  Google Scholar 

  85. Qi, P., Zhang, T., Shao, J., Yang, B., Fei, T., Wang, R.: A QCM humidity sensor constructed by graphene quantum dots and chitosan composites. Sens. Actuators A (2019). https://doi.org/10.1016/j.sna.2019.01.009

    Article  Google Scholar 

  86. Chen, H., Müller, M.B., Gilmore, K.J., Wallace, G.G., Li, D.: Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. (2008). https://doi.org/10.1002/adma.200800757

    Article  Google Scholar 

  87. Shen, Y., Zhang, H.F., Wang, L.M., Xu, L.H., Ding, Y.: Fabrication of electromagnetic shielding polyester fabrics with carboxymethyl chitosan-palladium complexes activation. Fibers Polym. (2014). https://doi.org/10.1007/s12221-014-1414-2

    Article  Google Scholar 

  88. Liu, J., Zhang, H.B., Liu, Y., Wang, Q., Liu, Z., Mai, Y.W., Yu, Z.Z.: Magnetic, electrically conductive and lightweight graphene/iron pentacarbonyl porous films enhanced with chitosan for highly efficient broadband electromagnetic interference shielding. Compos. Sci. Technol. (2017). https://doi.org/10.1016/j.compscitech.2017.08.005

    Article  Google Scholar 

  89. Li, S.W., He, H., Zeng, R.J., Sheng, G.P.: Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells. Chemosphere (2017). https://doi.org/10.1016/j.chemosphere.2016.10.080

    Article  Google Scholar 

  90. He, Z., Liu, J., Qiao, Y., Li, C.M., Tan, T.T.Y.: Architecture engineering of hierarchically porous chitosan/vacuum-stripped graphene scaffold as bioanode for high performance microbial fuel cell. Nano Lett. (2012). https://doi.org/10.1021/nl302175j

    Article  Google Scholar 

  91. Liu, H., Gong, C., Wang, J., Liu, X., Liu, H., Cheng, F., Wang, G., Zheng, G., Qin, C., Wen, S.: Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2015.09.085

    Article  Google Scholar 

  92. Vijayalekshmi, V., Khastgir, D.: Eco-friendly methanesulfonic acid and sodium salt of dodecylbenzene sulfonic acid doped cross-linked chitosan based green polymer electrolyte membranes for fuel cell applications. J. Membr. Sci. (2017). https://doi.org/10.1016/j.memsci.2016.09.058

    Article  Google Scholar 

  93. Gong, C., Zhao, S., Tsen, W.C., Hu, F., Zhong, F., Zhang, B., Liu, H., Zheng, G., Qin, C., Wen, S.: Hierarchical layered double hydroxide coated carbon nanotube modified quaternized chitosan/polyvinyl alcohol for alkaline direct methanol fuel cells. J. Power Sources (2019). https://doi.org/10.1016/j.jpowsour.2019.227176

    Article  Google Scholar 

  94. Hasani-Sadrabadi, M.M., Dashtimoghadam, E., Majedi, F.S., Kabiri, K., Mokarram, N., Solati-Hashjin, M., Moaddel, H.: Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications. Chem. Commun. (2010). https://doi.org/10.1039/c0cc01125h

    Article  Google Scholar 

  95. Hasani-Sadrabadi, M.M., Dashtimoghadam, E., Mokarram, N., Majedi, F.S., Jacob, K.I.: Triple-layer proton exchange membranes based on chitosan biopolymer with reduced methanol crossover for high-performance direct methanol fuel cells application. Polymer (Guildf) (2012). https://doi.org/10.1016/j.polymer.2012.03.052

    Article  Google Scholar 

  96. Wu, H., Hou, W., Wang, J., Xiao, L., Jiang, Z.: Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix. J. Power Sources (2010). https://doi.org/10.1016/j.jpowsour.2010.01.079

    Article  Google Scholar 

  97. Jiang, Z., Zheng, X., Wu, H., Pan, F.: Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells. J. Power Sources (2008). https://doi.org/10.1016/j.jpowsour.2008.06.086

    Article  Google Scholar 

  98. Binsu, V.V., Nagarale, R.K., Shahi, V.K., Ghosh, P.K.: Studies on N-methylene phosphonic chitosan/poly(vinyl alcohol) composite proton-exchange membrane. React. Funct. Polym. (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.06.003

    Article  Google Scholar 

  99. Xiang, Y., Yang, M., Guo, Z., Cui, Z.: Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. J. Membr. Sci. (2009). https://doi.org/10.1016/j.memsci.2009.04.006

    Article  Google Scholar 

  100. Dashtimoghadam, E., Hasani-Sadrabadi, M.M., Moaddel, H.: Structural modification of chitosan biopolymer as a novel polyelectrolyte membrane for green power generation. Polym. Adv. Technol. (2010). https://doi.org/10.1002/pat.1496

    Article  Google Scholar 

  101. Hao, P., Zhao, Z., Leng, Y., Tian, J., Sang, Y., Boughton, R.I., Wong, C.P., Liu, H., Yang, B.: Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy (2015). https://doi.org/10.1016/j.nanoen.2015.02.035

    Article  Google Scholar 

  102. Cao, L., Yang, M., Wu, D., Lyu, F., Sun, Z., Zhong, X., Pan, H., Liu, H., Lu, Z.: Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage. Chem. Commun. (2017). https://doi.org/10.1039/c6cc08658f

    Article  Google Scholar 

  103. Jiang, P., Chen, C., Li, D.: Polypyrrole-decorated, milled carbon fibers-inserted chitin nanofibers/multiwalled carbon nanotubes flexible free-standing film for supercapacitors. Polym. Compos. (2019). https://doi.org/10.1002/pc.25292

    Article  Google Scholar 

  104. Anandhavelu, S., Dhanasekaran, V., Sethuraman, V., Park, H.J.: Chitin and chitosan based hybrid nanocomposites for super capacitor applications. J. Nanosci. Nanotechnol. (2017). https://doi.org/10.1166/jnn.2017.12721

    Article  Google Scholar 

  105. Aswathy, N.R., Palai, A.K., Ramadoss, A., Mohanty, S., Nayak, S.K.: Fabrication of cellulose acetate-chitosan based flexible 3D scaffold-like porous membrane for supercapacitor applications with PVA gel electrolyte. Cellulose (2020). https://doi.org/10.1007/s10570-020-03030-y

    Article  Google Scholar 

  106. Zhong, S., Kitta, M., Xu, Q.: Hierarchically porous carbons derived from metal–organic framework/chitosan composites for high-performance supercapacitors. Chem. Asian J. (2019). https://doi.org/10.1002/asia.201900318

    Article  Google Scholar 

  107. Qian, L., Fan, Y., Song, H., Zhou, X., Xiong, Y.: Poly(ionic liquid)/carboxymethyl chitosan complex-derived nitrogen and sulfur codoped porous carbon for high-performance supercapacitors. Ionics (Kiel) (2019). https://doi.org/10.1007/s11581-019-03051-z

    Article  Google Scholar 

  108. Hosseini, M.G., Shahryari, E.: Synthesis, characterization and electrochemical study of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline electrode as supercapacitor. J. Mater. Sci. Technol. (2016). https://doi.org/10.1016/j.jmst.2016.05.008

    Article  Google Scholar 

  109. Suneetha, R.B., Selvi, P., Vedhi, C.: Synthesis, structural and electrochemical characterization of Zn doped iron oxide/grapheneoxide/chitosan nanocomposite for supercapacitor application. Vacuum (2019). https://doi.org/10.1016/j.vacuum.2019.03.051

    Article  Google Scholar 

  110. Punde, N.S., Karna, S.P., Srivastava, A.K.: Supercapacitive performance of a ternary nanocomposite based on carbon nanofibers with nanostructured chitosan and cobalt particles. Mater. Chem. Phys. (2019). https://doi.org/10.1016/j.matchemphys.2019.05.048

    Article  Google Scholar 

  111. Gopalakrishnan, A., Vishnu, N., Badhulika, S.: Cuprous oxide nanocubes decorated reduced graphene oxide nanosheets embedded in chitosan matrix: a versatile electrode material for stable supercapacitor and sensing applications. J. Electroanal. Chem. (2019). https://doi.org/10.1016/j.jelechem.2018.12.051

    Article  Google Scholar 

  112. Zhang, K., Xu, R., Ge, W., Qi, M., Zhang, G., Xu, Q.H., Huang, F., Cao, Y., Wang, X.: Electrostatically self-assembled chitosan derivatives working as efficient cathode interlayers for organic solar cells. Nano Energy (2017). https://doi.org/10.1016/j.nanoen.2017.02.022

    Article  Google Scholar 

  113. Buraidah, M.H., Teo, L.P., Au Yong, C.M., Shah, S., Arof, A.K.: Performance of polymer electrolyte based on chitosan blended with poly(ethylene oxide) for plasmonic dye-sensitized solar cell. Opt. Mater. (Amst) (2016). https://doi.org/10.1016/j.optmat.2016.04.028

    Article  Google Scholar 

  114. Zhang, L., Chai, L., Qu, Q., Zhang, L., Shen, M., Zheng, H.: Chitosan, a new and environmental benign electrode binder for use with graphite anode in lithium-ion batteries. Electrochim. Acta (2013). https://doi.org/10.1016/j.electacta.2013.05.009

    Article  Google Scholar 

  115. Prasanna, K., Subburaj, T., Jo, Y.N., Lee, W.J., Lee, C.W.: Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries. ACS Appl. Mater. Interfaces (2015). https://doi.org/10.1021/am5084094

    Article  Google Scholar 

  116. Zhong, H., He, A., Lu, J., Sun, M., He, J., Zhang, L.: Carboxymethyl chitosan/conducting polymer as water-soluble composite binder for LiFePO4 cathode in lithium ion batteries. J. Power Sources (2016). https://doi.org/10.1016/j.jpowsour.2016.10.041

    Article  Google Scholar 

  117. Zhang, T.W., Shen, B., Yao, H.B., Ma, T., Lu, L.L., Zhou, F., Yu, S.H.: Prawn shell derived chitin nanofiber membranes as advanced sustainable separators for Li/Na-ion batteries. Nano Lett. (2017). https://doi.org/10.1021/acs.nanolett.7b01875

    Article  Google Scholar 

  118. Kim, J.K., Kim, D.H., Joo, S.H., Choi, B., Cha, A., Kim, K.M., Kwon, T.H., Kwak, S.K., Kang, S.J., Jin, J.: Hierarchical chitin fibers with aligned nanofibrillar architectures: a nonwoven-mat separator for lithium metal batteries. ACS Nano (2017). https://doi.org/10.1021/acsnano.7b02085

    Article  Google Scholar 

  119. Xu, K., Du, G., Zhong, T., Chen, D., Lin, X., Zheng, Z., Wang, S.: Green sustainable, facile nitrogen self-doped porous carbon derived from chitosan/cellulose nanocrystal biocomposites as a potential anode material for lithium-ion batteries. J. Taiwan Inst. Chem. Eng. (2020). https://doi.org/10.1016/j.jtice.2020.02.005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherin Peter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, S., Lyczko, N., Gopakumar, D. et al. Chitin and Chitosan Based Composites for Energy and Environmental Applications: A Review. Waste Biomass Valor 12, 4777–4804 (2021). https://doi.org/10.1007/s12649-020-01244-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01244-6

Keywords

Navigation