Skip to main content
Log in

Trends and evolution of contamination in a well-dated water reservoir sedimentary archive: the Brno Dam, Moravia, Czech Republic

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The sedimentary record from dams can provide important information about stratigraphy and pollution history of densely populated river basins. The Brno Dam is a small reservoir within the Morava River catchment (Czech Republic) accumulating lacustrine sediments since 1940 (dam filling). The stratigraphy of the dam sediments was studied using multiproxy stratigraphic analysis (X-ray densitometry, bulk magnetic susceptibility, diffuse spectral reflectance and cation-exchange capacity) of five sediment cores supported by ground-penetration radar sections. Concentrations of heavy metals were studied by X-ray fluorescence analysis. The thickness of the dam sediments decreases from 220 cm in the proximal part, near the feeder, to only 10 cm in the distal part, near the dyke. Sediments consist predominantly of finely-laminated silty sands, silts and clays. The sedimentation rate for the last ~22 years, inferred from 137Cs dating, decreases from 4.2 cm per year in the proximal part of the dam to 0.29 cm per year in its distal part. Distinct long-term trends were found in the depth profiles of heavy metal concentrations. The heavy metal contents increase significantly after 1940 in all cores, with peak concentrations confined to layers deposited in the 1960s and 1980s. A decreasing trend occurred after 1989 (the decline in Czech heavy industry). The results also show that heavy metal contamination is dependent on lithology (hyperpycnal flow layers related to floods). Increased concentrations of phosphorus in the sediments indicate long-term eutrophication of the dam. Despite the recent decreasing trends in heavy metal concentrations the phosphorus contents remain high in recent years and have caused persisting problems with algal growth in the dam mentioned by previous authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexakis D (2011) Diagnosis of stream sediment quality and assessment of toxic elements contamination sources in East Attica, Greece. Environ Earth Sci 63:1369–1383

    Article  Google Scholar 

  • Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol J (eds) Tracking environmental Change Using Lake Sediments. Kluwer Academic Publisher, Dordrecht, pp 171–203

    Google Scholar 

  • Audry S, Schäfer J, Blanc G, Jouanneau JM (2004) Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ Pollut 132:413–426

    Article  Google Scholar 

  • Bábek O, Hilschnerová K, Nehyba S, Zeman J, Faměra M, Franců J, Holoubek I, Machát J, Klánová J (2008) Contamination history of suspended river sediments accumulated in oxbow lakes over the last 25 years. J Soil Sediment 8:165–176

    Article  Google Scholar 

  • Bábek O, Faměra M, Hilschnerová K, Kalvoda J, Dobrovolný P, Sedláček J, Machát J, Holoubek I (2011) Geochemical traces of flood layers in the fluvial sedimentary archive, implications for contamination history alanyses. Catena 87:281–290

    Article  Google Scholar 

  • Bayer M, Mencl V, Pelikán V (1954) Erozivní zjevy na březích nádrže na řece Svratce v Kníníčkách. Sbor VŠ Stav IV pp 293–302

  • Bennett MR, Doyle P (1997) Environmental geology: geology and the human environment. Wiley, Chichester

    Google Scholar 

  • Bibi H, Ahmed F, Ishiga H, Asaeda T, Fujino T (2010) Present environment of Dam Lake Sambe, southwestern Japan: a geochemical study of bottom sediments. Environ Earth Sci 60:655–670

    Article  Google Scholar 

  • Bláha L, Bláhová L, Kohoutek J, Adamovský O, Babica P, Maršálek B (2010) Temporal and spatial variability of cyanobacterial microcystins in three interconnected freshwater reservoirs. J Serb Chem Soc 75(9):1303–1312

    Article  Google Scholar 

  • Boyle JF (2000) Rapid elemental analysis of sediment samples by isotope source XRF. J Paleolimnol 23:213–221

    Article  Google Scholar 

  • Bubík M, Bíl M (2001) Předběžné výsledky sedimentologického studia přehradních sedimentů nádrží Horní bečva (Beskydy) a Pastviny (Orlické hory). Geol Výzk Mor Slez 94-98

  • Callaway JC, DeLaune RD, Patrick WH Jr (1996) Chernobyl 137Cs used to determine sediment accretion rates at selected northern European coastal wetlands. Limnol Oceanogr 41:444–450

    Article  Google Scholar 

  • Cook RB, Kelly CA (1992) Sulphur cycling and fluxes in temperate dimictic lakes. In: Howarth RW, Steward Ivanov MV (eds) Sulphur cycling on the continents. Wiley, Washington, pp 145–188

    Google Scholar 

  • Csuros M (1994) Environmental sampling and analysis for technicians. Lewis Publishers, Boca Raton

    Google Scholar 

  • Dauvalter V, Rognerund S (2001) Heavy metal pollution in sediments of the Paskvik River drainage. Chemosphere 42:9–18

    Article  Google Scholar 

  • Desenfant F, Petrovský E, Rochette P (2004) Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France. Water Air Soil Pollut 152:297–312

    Article  Google Scholar 

  • Förstner U (2004) Sediment dynamics and polutant mobility in rivers: an interdisciplinary approach. Lake Reserv Manage 9:25–40

    Article  Google Scholar 

  • Foster IDL, Walling DE (1994) Using reservoir deposits to reconstruct changing sediment yields and sources in the catchment of the Old Mill Reservoir, South Devon, UK, over the past 50 years. J Sci Hydrol 39:347–368

    Article  Google Scholar 

  • Franců E, Schwarzbauer J, Lána R, Nývlt D, Nehyba S (2010) Historical changes in levels of organic pollutants in sediment cores from Brno reservoir, Czech Republic. Water Air Soil Pollut 209:81–91

    Article  Google Scholar 

  • Grosbois C, Meybeck M, Horowitz A, Ficht A (2006) The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine river floodplan deposits (1994–2000). Sci Total Environ 356:22–37

    Article  Google Scholar 

  • Grygar T, Kadlec J, Žigová A, Mihaljevič M, Nekutová T, Lojka R, Světlík I (2009) Chemostratigraphic correlation of sediments containing expandable clay minerals based on ion exchange with Cu (II) triethylenetetramine. Clay Clay Miner 57:168–182

    Article  Google Scholar 

  • Grygar T, Světlík I, Lisá L, Koptíková L, Bajer A, Wray DS, Ettler V, Mihaljevič M, Nováková T, Koubová M, Novák J, Máčka Z, Smetana M (2010) Geochemical tools for the stratigraphic correlation of floodplain deposits of the Morava River in Strážnické Pomoraví, Czech Republic from the last millenium. Catena 80:106–121

    Article  Google Scholar 

  • Heim S, Schwarzbauer J, Kronimus A, Littke R, Woda C, Mangini A (2004) Geochronology of antropogenic pollutants in riparian wetland sediments of the Lippe river (Germany). Org Geochem 35:1409–1425

    Google Scholar 

  • Ilus E, Saxén R (2005) Accumulation of Chernobyl-derived 137Cs in bottom sediments of some Finnish lakes. J Environ Radioactiv 82:199–221

    Article  Google Scholar 

  • Kadlec J, Grygar T, Světlík I, Ettler V, Mihaljevic JF, Diehl S, Beske-Diehl S, Svitavská-Svobodová H (2009) Morava River floodplain development during the last millenium, Strážnické Pomoraví, Czech Republic. Holocene 19:499–510

    Article  Google Scholar 

  • Kallf J (2003) Limnology. Prentice Hall, London

    Google Scholar 

  • Kansanen PH, Jaakkola T (1985) Assesment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. I. Selection of representative profiles, their dating and chemostratigraphy. Ann Zool Fennici 22:13–55

    Google Scholar 

  • Kapička A, Petrovský E, Ustjak S, Macháčková K (1999a) Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. J Geochem Explor 66:291–297

    Article  Google Scholar 

  • Kapička A, Petrovský E, Ustjak S, Macháčková K (1999b) Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. J Geochem Explor 66:291–297

    Article  Google Scholar 

  • Keith LH (1991) Environmental sampling and analysis: a practical guide. Lewis Publishers, Boca Raton

    Google Scholar 

  • Matys Grygar T, Sedláček J, Bábek O, Nováková T, Strnad L, Mihaljevič M (2011) Regional contamination of Moravia (South-Eastern Czech Republic): temporal shift of Pb and Zn loading in fluvial sediments. Water Air Soil Pollut 223:739–753

    Article  Google Scholar 

  • Meier LP, Kahr P (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetranine and tetraethylenepentamine. Clays Clay Miner 47:386–388

    Article  Google Scholar 

  • Mulholland DS, Boaventura GR, Araujo DF (2012) Geological and anthropogenic influences on sediment metal composition in the upper Paracatu River Basin, Brasil. Environ Earth Sci. doi:10.1007/s12665-012-1574-6

    Google Scholar 

  • Navrátil T, Rohovec J, Žák K (2008) Floodplain sediments of the 2002 catastrophic flood at the Vltava (Moldau) River and its tributaries: mineralogy, chemical composition and post-sedimentary evolution. Environ Geol 56:399–412

    Google Scholar 

  • Novák M, Emmanuel S, Vile MA, Erel Y, Véron A, Pačes T, Wieder KR, Vaněček M, Štěpánová M, Břízová E, Hovorka J (2003) Origin of lead in eight central European peat bogs determined from isotope ratios, strengths, and operation times of regional pollution sources. Environ Sci Technol 37:437–445

    Google Scholar 

  • Ojala AEK (2006) Application of X-ray radiography and densitometry in varve analysis. In: Francus P (ed) Image analysis, sediments and paleoenviroment. Kluwer Academic Publisher, Dordrecht, pp 187–202

    Google Scholar 

  • Osleger DA, Zierenberg RA, Suchanek TH, Stoner JS, Morgan S, Adam DP (2008) Clear lake sediments: anthropogenic changes in physical sedimentology and magnetic response. Ecol Appl 18(8):239–256

    Article  Google Scholar 

  • Petrovský E, Kapička A, Zapletal K, Šebestová E, Spanilá T, Dekkers MJ, Rochette P (1998) Correlation between magnetic parameters and chemical composition of lake sediments from northern Bohemia—Preliminary study. Phys Chem Earth 23:1123–1126

    Article  Google Scholar 

  • Radoane M, Radoane N (2005) Dams, sediment sources and reservoir silting in Romania. Geomorphology 71:112–125

    Article  Google Scholar 

  • Ritchie JC, McHenry JR (1990) Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19:215–233

    Article  Google Scholar 

  • Rudiš M, Hájek R, Hrubec K (2007) Determination of different types of sediments in a river reservoir and computation of their volumes. J Hydrol Hydromech 4:213–222

    Google Scholar 

  • Smol JP (2008) Pollution of lakes and rivers: a paleoenvironmental perspective, 2nd edn. Wiley, Oxford

    Google Scholar 

  • Smutná M, Hilschnerová K, Pašková V, Maršálek B (2008) Biochemical parameters in Tubifex tubifex as an integral part of complex sediment toxicity assesment. J Soil Sediment 8:154–164

    Article  Google Scholar 

  • Thirunavukkarasu OS, Viraraghavan T, Selvapathy P (2000) A comparative account of phosphorus release from sediments of a lake and a reservoir: laboratory experiments. Fresen Environ Bull 9:461–467

    Google Scholar 

  • Thompson R, Battarbee RW, O’Sullivan P, Oldfield F (1975) Magnetic susceptibility of lake sediments. Limnol Oceanogr 20:687–697

    Article  Google Scholar 

  • Tiljander M, Ojala AEK, Saarinen T, Snowball IF (2002) Documentation of the physical properties of annually laminated (varved) sediments at a sub-annual resolution and their environmental interpretation. Quat Int 88:5–12

    Article  Google Scholar 

  • Urban NR (1994) Retention of sulphur in lake sediments. Limnol Oceanogr 27:552–556

    Google Scholar 

  • Weiss D, Shotyk W, Appleby PG, Kramers ID, Cheburkin AK (1999) Atmospheric Pb deposition since the industrial revolution recorded by five Swiss peat profiles: enrichment factors, fluxes, isotopic composition, and sources. Environ Sci Technol 33:1340–1352

    Article  Google Scholar 

  • Wildi W (2010) Environmental hazards of dams and reservoirs, NEAR curriculum in Natural Environmental Science. Terre Environ 88:187–197

    Google Scholar 

  • Wildi W, Hofmann A, Monnerat M, Perroud A (2003) Sediment contamination in a river reservoir-Wettingen Reservoir, Switzerland-present situation and history. Ecologae Geol Helv 96:127–133

    Google Scholar 

  • Wildi W, Dominik J, Loizeau JL, Thomas RL, Favarger PY, Haller L, Perroud A, Peytremann CH (2004) River, reservoir and lake sediments contamination by heavy metals downstream from urban areas of Switzerland. Lake Reserv Manage 9:75–87

    Article  Google Scholar 

  • Zheng J, Wu F, Yamada M, Liao H, Liu C, Wan G (2008) Global fallout Pu recorded in lacustrine sediments in Lake Hongfeng, SW China. Environ Pollut 152:314–321

    Article  Google Scholar 

  • Zhou F, Liu Y, Guo HC (2006) Application of multivariable statistical methods to the water quality assesment of the watercourses in the Northwestern New Territories. Hong Kong. Environ Monit Assess 132(1–3):1–13

    Google Scholar 

Download references

Acknowledgments

This study was supported by the project MSM0021622412 (INCHEMBIOL). The authors would like to thank Daniel Šimíček and Martin Faměra (Department of Geological Sciences, Masaryk University, Brno) for their field and logistical assistance. We would also like to thank Petr Worm, Zuzana Hájková and Tereza Nováková (Institute of Inorganic chemistry AS CR, Řež) for their help with the laboratory analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sedláček.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedláček, J., Bábek, O. & Grygar, T.M. Trends and evolution of contamination in a well-dated water reservoir sedimentary archive: the Brno Dam, Moravia, Czech Republic. Environ Earth Sci 69, 2581–2593 (2013). https://doi.org/10.1007/s12665-012-2089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2089-x

Keywords

Navigation