Skip to main content
Erschienen in: Environmental Earth Sciences 8/2014

01.04.2014 | Original Article

Feasibility of using fly ash, lime, and bentonite to neutralize acidity of pore fluids

verfasst von: I. B. Gratchev, A. Shokouhi, A. Balasubramaniam

Erschienen in: Environmental Earth Sciences | Ausgabe 8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Acidic groundwater resulting from the poorly planned use of acid sulfate soils has become a major environmental issue in coastal Australia over the last several years. Use of permeable reactive barriers (PRBs) designed to generate alkalinity by promoting sulfate reduction has recently become popular as an alternative solution to this problem. However, recent studies have also revealed that the long-term performance of such PRBs can be significantly undermined by chemical precipitation and clogging of pore space, which would decrease the buffer capacity and hydraulic conductivity of the reactive material. This study seeks to explore the feasibility of using bentonite in addition to lime and fly ash to form mixtures with a high buffer capacity and permeability that would enable groundwater flow through PRBs over a substantial period of time. A series of laboratory experiments, including buffer capacity and leaching tests, were performed on different mixtures of fly ash with lime and bentonite using acidic fluids of low pH. It was found that the ability of such mixtures to neutralize acidic fluids was mostly controlled by the content of lime. Laboratory data also showed that an addition of bentonite to lime—fly ash mixtures could decrease the buffer capacity of soil. Compaction tests indicated that the presence of bentonite would increase the dry density of mixtures at the optimum moisture content. A series of hydraulic conductivity tests were carried out to study changes in the coefficient of permeability of lime—fly ash mixtures with different contents of bentonite permeated with acidic liquids. The obtained results revealed that the coefficient of permeability of the specimens tended to increase over a period of time, likely due to the changes in the diffuse double layer of bentonite particles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Australian Standard AS 1289 5.1.1-2003 (2003) Soil compaction and density tests—Determination of the dry density/moisture content ratio of a soil using standard compactive effort Australian Standard AS 1289 5.1.1-2003 (2003) Soil compaction and density tests—Determination of the dry density/moisture content ratio of a soil using standard compactive effort
Zurück zum Zitat Australian Standard AS 1289 6.7.2-2001 (2001) Method of testing soils for engineering purposes: Method 6.7.2 Soil strength and consolidation tests—determination of permeability of a soil—falling head method for remoulded specimen Australian Standard AS 1289 6.7.2-2001 (2001) Method of testing soils for engineering purposes: Method 6.7.2 Soil strength and consolidation tests—determination of permeability of a soil—falling head method for remoulded specimen
Zurück zum Zitat Bulusu S, Aydilek AH, Petzrick P, Guynn R (2005) Remediation of abandoned mines using coal combustion by-products. J Geotech Geoenviron Eng ASCE 131(8):958–969CrossRef Bulusu S, Aydilek AH, Petzrick P, Guynn R (2005) Remediation of abandoned mines using coal combustion by-products. J Geotech Geoenviron Eng ASCE 131(8):958–969CrossRef
Zurück zum Zitat D’Appolonia D (1980) Soil-bentonite slurry trench cutoffs. J Geotech Geoenviron Eng ASCE 106(4):399–417 D’Appolonia D (1980) Soil-bentonite slurry trench cutoffs. J Geotech Geoenviron Eng ASCE 106(4):399–417
Zurück zum Zitat Dermatas D, Meng XG (2003) Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng Geol 70(3–4):377–394CrossRef Dermatas D, Meng XG (2003) Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng Geol 70(3–4):377–394CrossRef
Zurück zum Zitat Ghosh A, Subbarao C (2006) Leaching of lime from fly ash stabilised with lime and gypsum. J Mater Civ Eng 18:106–115CrossRef Ghosh A, Subbarao C (2006) Leaching of lime from fly ash stabilised with lime and gypsum. J Mater Civ Eng 18:106–115CrossRef
Zurück zum Zitat Golab AN, Peterson MA, Indraratna B (2006) Selection of potential reactive materials for a permeable reactive barrier for remediating acid groundwater in acid sulfate soil terrains. Q J Eng Geol Hydrogeol 39:209–223CrossRef Golab AN, Peterson MA, Indraratna B (2006) Selection of potential reactive materials for a permeable reactive barrier for remediating acid groundwater in acid sulfate soil terrains. Q J Eng Geol Hydrogeol 39:209–223CrossRef
Zurück zum Zitat Golab AN, Peterson MA, Indraratna B (2009) Selection of permeable reactive barrier materials for treating acidic groundwater in acid sulfate soil terrains based on laboratory column tests. J Environ Earth Sci 59:241–254CrossRef Golab AN, Peterson MA, Indraratna B (2009) Selection of permeable reactive barrier materials for treating acidic groundwater in acid sulfate soil terrains based on laboratory column tests. J Environ Earth Sci 59:241–254CrossRef
Zurück zum Zitat Gratchev I, Towhata I (2009) Effects of acidic contamination on the geotechnical properties of marine soils in Japan. In: Proceedings of ISOPE-2009 Osaka: 19th international offshore (ocean) and polar engineering conference, pp 151–155 Gratchev I, Towhata I (2009) Effects of acidic contamination on the geotechnical properties of marine soils in Japan. In: Proceedings of ISOPE-2009 Osaka: 19th international offshore (ocean) and polar engineering conference, pp 151–155
Zurück zum Zitat Gratchev I, Towhata I (2010) Compressibility of natural soils subjected to long-term acidic contamination. Environ Earth Sci 64(1):193–200CrossRef Gratchev I, Towhata I (2010) Compressibility of natural soils subjected to long-term acidic contamination. Environ Earth Sci 64(1):193–200CrossRef
Zurück zum Zitat Gratchev I, Sassa K, Osipov V, Fukuoka H, Wang G (2007) Undrained cyclic behavior of bentonite-sand mixtures and factors affecting it. Geotech Geol Eng 25:349–367CrossRef Gratchev I, Sassa K, Osipov V, Fukuoka H, Wang G (2007) Undrained cyclic behavior of bentonite-sand mixtures and factors affecting it. Geotech Geol Eng 25:349–367CrossRef
Zurück zum Zitat Gratchev I, Shokouhi A, Inoue A, Brennan A (2012) Feasibility of using bentonite lime and fly ash in permeable reactive barriers for acid sulfate soils. In: The 11th Australia New Zealand Conference on Geomechanics (ANZ 2012), Melbourne, pp 7–12 Gratchev I, Shokouhi A, Inoue A, Brennan A (2012) Feasibility of using bentonite lime and fly ash in permeable reactive barriers for acid sulfate soils. In: The 11th Australia New Zealand Conference on Geomechanics (ANZ 2012), Melbourne, pp 7–12
Zurück zum Zitat Indraratna B, Glamore WC, Tularam GA (2002) The effects of tidal buffering on acid sulfate soil environments in coastal areas of New South Wales. J Geotech Geol Eng 20:181–199CrossRef Indraratna B, Glamore WC, Tularam GA (2002) The effects of tidal buffering on acid sulfate soil environments in coastal areas of New South Wales. J Geotech Geol Eng 20:181–199CrossRef
Zurück zum Zitat Indraratna B, Regmi G, Nghiem LD, Golab AN (2010) Performance of a PRB for the remediation of acidic groundwater in acid sulfate soil terrain. J Geotech Geoenviron Eng ASCE 136(7):897–906CrossRef Indraratna B, Regmi G, Nghiem LD, Golab AN (2010) Performance of a PRB for the remediation of acidic groundwater in acid sulfate soil terrain. J Geotech Geoenviron Eng ASCE 136(7):897–906CrossRef
Zurück zum Zitat Kashir M, Yanful EK (2001) Hydraulic conductivity of bentonite permeated with acid mine drainage. J Can Geotech 38:1034–1048CrossRef Kashir M, Yanful EK (2001) Hydraulic conductivity of bentonite permeated with acid mine drainage. J Can Geotech 38:1034–1048CrossRef
Zurück zum Zitat Mollamahmutoglu M, Yilmaz Y (2001) Potential use of fly ash and bentonite mixture as liner or cover as waste disposal areas. Environ Geol 40:1316–1324CrossRef Mollamahmutoglu M, Yilmaz Y (2001) Potential use of fly ash and bentonite mixture as liner or cover as waste disposal areas. Environ Geol 40:1316–1324CrossRef
Zurück zum Zitat Nayak S, Sunil BM, Shrihari S (2007) Hydraulic and compaction characteristics of leachate-contaminated lateritic soil. Eng Geol 94:137–144CrossRef Nayak S, Sunil BM, Shrihari S (2007) Hydraulic and compaction characteristics of leachate-contaminated lateritic soil. Eng Geol 94:137–144CrossRef
Zurück zum Zitat Nhan CT, Graydon JW, Kirk DW (1996) Utilizing coal fly ash as a landfill barrier material. Waste Manage (Oxford) 16(7):587–595CrossRef Nhan CT, Graydon JW, Kirk DW (1996) Utilizing coal fly ash as a landfill barrier material. Waste Manage (Oxford) 16(7):587–595CrossRef
Zurück zum Zitat Perez-Lopes R, Nieto JM, Almodovar GR (2007) Utilazation of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments. Chemosphere 67:1637–1646CrossRef Perez-Lopes R, Nieto JM, Almodovar GR (2007) Utilazation of fly ash to improve the quality of the acid mine drainage generated by oxidation of a sulphide-rich mining waste: column experiments. Chemosphere 67:1637–1646CrossRef
Zurück zum Zitat Polat M, Guler E, Akar G, Morgodan H, Ipekoglu U, Cohen H (2002) Meutralization of acid mine drainage by Turkish lignitic fly ashes: role of organic additives in the fixation of toxic elements. J Chem Technol Biotechnol 77(3):372–376CrossRef Polat M, Guler E, Akar G, Morgodan H, Ipekoglu U, Cohen H (2002) Meutralization of acid mine drainage by Turkish lignitic fly ashes: role of organic additives in the fixation of toxic elements. J Chem Technol Biotechnol 77(3):372–376CrossRef
Zurück zum Zitat Regmi G, Indrarata B, Nghiem LD, Golab A, Guru Prasad B (2011) Treatment of acidic groundwater in acid sulfate soil: column experiments. J Mater Civ Eng 137(6):433–443CrossRef Regmi G, Indrarata B, Nghiem LD, Golab A, Guru Prasad B (2011) Treatment of acidic groundwater in acid sulfate soil: column experiments. J Mater Civ Eng 137(6):433–443CrossRef
Zurück zum Zitat Shang JQ, Wang HL, Kovac PE, Fyfe J (2006) Site-specific study on stabilization of acid-generating mine tailings using coal fly ash. J Mater Civ Eng 18(2):140–151 Shang JQ, Wang HL, Kovac PE, Fyfe J (2006) Site-specific study on stabilization of acid-generating mine tailings using coal fly ash. J Mater Civ Eng 18(2):140–151
Zurück zum Zitat Stouraiti C, Xenidis A, Paspaliaris I (2002) Reduction of Pb, Zn and Cd availability from tailings and contaminated soils by the application of lignite fly ash. Water Air Soil Pollut 137:247–265CrossRef Stouraiti C, Xenidis A, Paspaliaris I (2002) Reduction of Pb, Zn and Cd availability from tailings and contaminated soils by the application of lignite fly ash. Water Air Soil Pollut 137:247–265CrossRef
Zurück zum Zitat Van Olphen H (1977) Introduction to colloid chemistry. Wiley, New York Van Olphen H (1977) Introduction to colloid chemistry. Wiley, New York
Zurück zum Zitat Wang HL, Shang JQ, Kovac V, Ho KS (2006) Utilization of Atikokan coal fly ash in acid rock drainage control from Musselwhite Mine tailings. Can Geotech J 43(3):229–243CrossRef Wang HL, Shang JQ, Kovac V, Ho KS (2006) Utilization of Atikokan coal fly ash in acid rock drainage control from Musselwhite Mine tailings. Can Geotech J 43(3):229–243CrossRef
Zurück zum Zitat Waybrant KR, Ptacek CJ, Blowes DW (2002) Treatment of mine drainage using permeable reactive barriers: column experiments. Environ Sci Technol 36:1349–1356CrossRef Waybrant KR, Ptacek CJ, Blowes DW (2002) Treatment of mine drainage using permeable reactive barriers: column experiments. Environ Sci Technol 36:1349–1356CrossRef
Zurück zum Zitat Wearing C, Nairn JD, Birch C (2004) An assessment of tarong bottom ash for use on agricultural soils. Dev Chem Eng Miner Process 12(5):531–544 Wearing C, Nairn JD, Birch C (2004) An assessment of tarong bottom ash for use on agricultural soils. Dev Chem Eng Miner Process 12(5):531–544
Zurück zum Zitat White I, Melville MD, Wilson BP, Sammut J (1997) Reducing acidic discharges from coastal wetlandsin eastern Australia. Wetlands Ecol Manage 5(1):55–72CrossRef White I, Melville MD, Wilson BP, Sammut J (1997) Reducing acidic discharges from coastal wetlandsin eastern Australia. Wetlands Ecol Manage 5(1):55–72CrossRef
Zurück zum Zitat Yeheyis MB, Shang JQ, Yanful EK (2010) Feasibility of using coal fly ash for mine waste containment. J Environ Eng 136(7):682–690CrossRef Yeheyis MB, Shang JQ, Yanful EK (2010) Feasibility of using coal fly ash for mine waste containment. J Environ Eng 136(7):682–690CrossRef
Zurück zum Zitat Yong RN, Warkentin BP, Phadungchewit Y, Galvez R (1990) Buffer capacity and lead retention in some clay materials. J Water Air Soil Pollut 53:53–67CrossRef Yong RN, Warkentin BP, Phadungchewit Y, Galvez R (1990) Buffer capacity and lead retention in some clay materials. J Water Air Soil Pollut 53:53–67CrossRef
Zurück zum Zitat Zaeni A, Bandyopadhyay S, Yu A, Rider J, Sorrell C, Dain S, Blackburn D, White C (2010) Colour control in fly ash as a combined function of particle size and chemical composition. Fuel 89:399–404CrossRef Zaeni A, Bandyopadhyay S, Yu A, Rider J, Sorrell C, Dain S, Blackburn D, White C (2010) Colour control in fly ash as a combined function of particle size and chemical composition. Fuel 89:399–404CrossRef
Metadaten
Titel
Feasibility of using fly ash, lime, and bentonite to neutralize acidity of pore fluids
verfasst von
I. B. Gratchev
A. Shokouhi
A. Balasubramaniam
Publikationsdatum
01.04.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 8/2014
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-013-2719-y

Weitere Artikel der Ausgabe 8/2014

Environmental Earth Sciences 8/2014 Zur Ausgabe