Skip to main content

Advertisement

Log in

Simulation of acid rain weathering effect on natural and artificial carbonate stones

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Atmospheric pollutants are changing due to policies aiming at attenuating climate change. Some of the results of these measures are the current inversion on the SO2/NOx proportion and the pH increase of acid rains to 5 in some areas. The aim of this study was to have a better understanding of the relation between the microstructural and chemical characteristics of carbonated stones and their response to acid rain effects. This work also compared the response of natural stones as opposed to an artificial stone used in their replacement in the Orval Abbey (Belgium). Three natural and one reconstituted stones were selected. Nitric and sulphuric acidic solutions at pH = 5 were tested. For each solution, two tests of “passive immersion” and “active immersion” were conducted. Variations in weight, porosity, dissolved concentrations, colour and surface topography were measured. Stone SEM observations were additionally performed. The results indicate that active immersion is more effective than the passive one. The pore connectivity plays a key role in the stone dissolution and entails a difference between passive and active conditions. The different effect of nitric and sulphuric acids is related to the stone type. In spite of the initial presence of sulphur, the artificial stone appears less sensitive than the natural stone it replaces, due to its low pore connectivity and the concentrated distribution of iron oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ausset P, Bannery F, Del Monte M, Lefèvre RA (1998) Recording of pre-industrial atmospheric environment by ancient crusts on stone monuments. Atmos Environ 32(16):2859–2863

    Article  Google Scholar 

  • Baedecker PA, Reddy MM (1993) The erosion of carbonate stone by acid rain: laboratory and field investigations. J Chem Educ 70(2):104

    Article  Google Scholar 

  • Barbero BR, Ureta ES (2011) Comparative study of different digitization techniques and their accuracy. Comput Aided Des 43:188–206

    Article  Google Scholar 

  • Bonazza A, Messina P, Sabbioni C, Grossi CM, Brimblecombe P (2009) Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci Total Environ 407(6):2039–2050

    Article  Google Scholar 

  • Cardell-Fernández C, Vleugels G, Torfs K, Van Grieken R (2002) The processes dominating Ca dissolution of limestone when exposed to ambient atmospheric conditions as determined by comparing dissolution models. Environ Geol 43(1–2):160–171

    Google Scholar 

  • CEN (European Committee for Standardisation) (2009) EN ISO 105-J03: Textiles—tests for colour fastness—Part J03 Calculation of colour Differences. CEN, Brussels

    Google Scholar 

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull 54(2):207–250

    Google Scholar 

  • CITEPA (2015) Inventaire des émissions de polluants atmosphériques et de gaz à effet de serre en France -Format SECTEN-Ministère de l’Ecologie, du Développement durable et de l’Ecologie. http://www.citepa.org/images/III-1_Rapports_Inventaires/secten_avril2015_sec.pdf

  • Devos A, Fronteau G, Lejeune O, Sosson C, Chopin E, Barbin V (2010) Influence of geomorphological constraints and exploitation techniques on stone quarry spatial organisation. Example of Lutetian underground quarries in Rheims, Laon and Soissons areas. Eng Geol 115(3–4):268–275

    Article  Google Scholar 

  • Dewanckele J, De Kock T, Fronteau G, Derluyn H, Vontobel P, Dierick M, Van Hoorebeke L, Jacobs P, Cnudde V (2014) Neutron radiography and X-ray computed tomography for quantifying weathering and water uptake processes inside porous limestone used as building material. Mater Charact 88:86–99

    Article  Google Scholar 

  • Dolske DA (1995) Deposition of atmospheric pollutants to monuments, statues, and buildings. Sci Total Environ 167(1):15–31

    Article  Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. Classification of carbonate rocks, WE Ham. AAPG Mem 1:108–121

    Google Scholar 

  • Eyssautier-Chuine S, Vaillant-Gaveau N, Gommeaux M, Thomachot-Schneider C, Pleck J, Fronteau G (2015) Efficacy of different chemical mixtures against green algal growth on limestone: a case study with Chlorella vulgaris. Int Biodeter Biodegr 103:59–66

    Article  Google Scholar 

  • Folk RL (1959) Practical petrographic classification of limestones. AAPG Bull 43:1–38

    Google Scholar 

  • Franzoni E, Sassoni E (2011) Correlation between microstructural characteristics and weight loss of natural stones exposed to simulated acid rain. Sci Total Environ 412:278–285

    Article  Google Scholar 

  • Fronteau G (2000) Comportements télogénétiques des principaux calcaires de Champagne-Ardenne, en relation avec leur faciès de dépôt et leur séquençage diagénétique. Thesis. University of Reims

  • Fronteau G, Schneider-Thomachot C, Chopin E, Barbin V, Mouze D, Pascal A (2010) Black-crust growth and interaction with underlying limestone microfacies. Geol Soc Spec Publ 333:25–34

    Article  Google Scholar 

  • Graue B, Siegesmund S, Oyhantcabal P, Naumann R, Licha T, Simon K (2013) The effect of air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban, and rural environments—a case study of the Cologne, Altenberg and Xanten cathedrals. Environ Earth Sci 69(4):1095–1124

    Article  Google Scholar 

  • Grossi CM, Brimblecombe P (2007) Effect of long-term changes in air pollution and climate on the decay and blackening of European stone buildings. Geol Soc Lond Spec Publ 271(1):117–130

    Article  Google Scholar 

  • Grossi CM, Murray M (1999) Characteristics of carbonate building stones that influence the dry deposition of acidic gases. Constr Build Mater 13(3):101–108

    Article  Google Scholar 

  • Grossi CM, Murray M, Butlin RN (1995) Response of porous building stones to acid deposition. Water, Air, and Soil Pollut 85(4):2713–2718

    Article  Google Scholar 

  • Haneef SJ, Johnson JB, Thompson GE, Wood GC (1993) The degradation of coupled stones by wet deposition processes. Corros Sci 34(3):497–510

    Article  Google Scholar 

  • Hebert P (2001) A self-referenced hand-held range sensor. In: Young DC (ed) Proceedings of the IEEE 3rd international conference on 3-D digital imaging and modeling. Quebec, 28 May–1 June 2001, pp 5–12

    Chapter  Google Scholar 

  • Holynska B, Gilewicz-Wolter J, Ostachowicz B, Bielewski M, Streli C, Wobrauschek P (2004) Study of the deterioration of sandstone due to acid rain and humid SO2 gas. X-Ray Spectrom 33(5):342–348

    Article  Google Scholar 

  • Hormann K, Labsik U, Greiner G (2001) Remeshing triangulated surfaces with optimal parameterization. Comput Aided Des 33:779–788

    Article  Google Scholar 

  • Johansson LG (1990) Synergistic effects of air pollutants on the atmospheric corrosion of metals and calcareous stones. Mar Chem 30:113–122

    Article  Google Scholar 

  • Johnson JB, Haneef SJ, Hepburn B, Hutchinson AJ, Thompson GE, Wood GC (1990) Laboratory exposure systems to simulate atmospheric degradation of building stone under dry and wet deposition conditions. Atmos Environ Part A Gen Top 24(10):2585–2592

    Article  Google Scholar 

  • Kucera V (2000) Dose-response functions as a basis for assessment of acceptable levels. In: Brandt-Grau A, Rérez-Victoria S, Chapuis M, Leissner J (eds) 4th European Commission Conference on research for protection, conservation and enhancement of cultural heritage: opportunities for European enterprises. Strasbourg 22–24 Nov 2000, pp 45–50

  • Kuzminsky SC, Gardiner MS (2012) Three-dimensional laser scanning: potential uses for museum conservation and scientific research. J Archaeol Sci 39:2744–2751

    Article  Google Scholar 

  • La Russa MF, Belfiore CM, Fichera GV, Maniscalco R, Calabrò C, Ruffolo SA, Pezzino A (2015) The behaviour to weathering of the Hyblean limestone in the Baroque architecture of the Val diNoto (SE Sicily): an experimental study on the “calcare a lumachella” stone. Constr Build Mater 77:7–19

    Article  Google Scholar 

  • Laycock EA, Spence K, Jefferson DP, Hetherington S, Martin B, Wood C (2008) Testing the durability of limestone for Cathedral façade restoration. Environ Geol 56(3):521–528

    Article  Google Scholar 

  • Lipfert FW (1989) Atmospheric damage to calcareous stones: comparison and reconciliation of recent experimental findings. Atmos Environ 23(2):415–429

    Article  Google Scholar 

  • Livingston RA (1992) Graphic methods for examining the effect of sulphur dioxide on carbonate stones. In: Proceedings of 7th international congress deterioration and conservation of stone, Laboratorio Nacional de Engenheria Civil, Lisbon, pp 375–386

  • Malaga-Starzec K, Panas I, Lindqvist JE, Lindqvist O (2003) Efflorescence on thin sections of calcareous stones. J Cult Herit 4(4):313–318

    Article  Google Scholar 

  • Massey SW (1999) The effects of ozone and NOx on the deterioration of calcareous stone. Sci Total Environ 227(2):109–121

    Article  Google Scholar 

  • Monna F, Puertas A, Leveque F, Losno R, Fronteau G, Marin B, Petit C, Forel B, Chateau C (2008) Geochemical records of limestone façades exposed to urban atmospheric contamination as monitoring tools? Atmos Environ 42(5):999–1011

    Article  Google Scholar 

  • Morel D, Bodart E, Boulvain F, Dierckens A, Finoulst LA, Fronteau G, Yans J, Yante JM, Piavaux M (2012) Les calcaires de Lorraine dans l’architecture et la sculpture gothiques de la région mosane. Origine, utilisation et diffusion d’un matériau au Moyen Âge. » . Bulletin du centre d’études médiévales d’Auxerre BUCEMA. doi:10.4000/cem.12432

  • Reddy MM (1988) Acid rain damage to carbonate stone: a quantitative assessment based on the aqueous geochemistry of rainfall runoff from stone. Earth Surf Process Landf 13(4):335–354

    Article  Google Scholar 

  • Roels S, Carmeliet J, Hens H (2003) Modelling unsaturated moisture transport in heterogeneous limestone. Transp Porous Media 52(3):333–350

    Article  Google Scholar 

  • Ross M, McGee ES, Ross DR (1989) Chemical and mineralogical effects of acid deposition on Shelburne Marble and Salem Limestone test samples placed at four NAPAP weather-monitoring sites. Am Miner 74:367–383

    Google Scholar 

  • Sabbioni C, Zappia G (1992) Decay of sandstone in urban areas correlated with atmospheric aerosol. Water Air Soil Pollut 63(3–4):305–316

    Article  Google Scholar 

  • Siegesmund S, Snethlage R (2011) Stone in architecture, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Tecer L (1999) Laboratory experiments on the investigation of the effects of sulphuric acid on the deterioration of carbonate stones and surface corrosion. Water Air Soil Pollut 114(1–2):1–12

    Article  Google Scholar 

  • Thomachot-Schneider C, Gommeaux M, Fronteau G, Oguchi CT, Eyssautier S, Kartheuser B (2011) A comparison of the properties and salt weathering susceptibility of natural and reconstituted stones of the Orval Abbey (Belgium). Environ Earth Sci 63(7–8):1447–1461

    Article  Google Scholar 

  • Thornbush MJ, Viles HA (2007) Simulation of the dissolution of weathered versus unweathered limestones in carbonic acid solutions of varying strength. Earth Surf Process Landf 32:841–852

    Article  Google Scholar 

  • Török Á, Rozgonyi N (2004) Morphology and mineralogy of weathering crusts on highly porous oolitic limestones, a case study from Budapest. Environ Geol 46(3–4):333–349

    Google Scholar 

  • Török Á, Licha T, Simon K, Siegesmund S (2011) Urban and rural limestone weathering; the contribution of dust to black crust formation. Environ Earth Sci 63(4):675–693

    Article  Google Scholar 

  • Tóth T, Živčák J (2014) A comparison of the outputs of 3D scanners. Procedia engineering 24th DAAAM international symposium on intelligent manufacturing and automation, 2013 69:393–401

  • Turmel A, Fronteau G, Thomachot-Schneider C, Moreau C, Chalumeau L, Barbin V (2014) Stone uses in Reims Cathedral: provenance, physical properties and restoration phases. Geol Soc Spec Publ 391(1):17–30

    Article  Google Scholar 

  • Vázquez P, Alonso FJ (2015) Colour and roughness measurements as NDT to evaluate ornamental granite decay. Procedia Earth Planet Sci 15:213–218

    Article  Google Scholar 

  • Vázquez P, Luque A, Alonso FJ, Grossi CM (2013) Surface changes on crystalline stones due to salt crystallisation. Environ Earth Sci 69(4):1237–1248

    Article  Google Scholar 

  • Vázquez P, Menéndez B, Denecker MFC, Thomachot-Schneider C (2015) Comparison between petrophysical properties, durability and use of two limestones of the Paris region. Geol Soc Lond Spec Publ 416:SP416–SP515

    Google Scholar 

  • Walbert C, Eslami J, Beaucour AL, Bourges A, Noumowe A (2015) Evolution of the mechanical behaviour of limestone subjected to freeze–thaw cycles. Environ Earth Sci 74(7):6339–6351

    Article  Google Scholar 

  • Webb AH, Bawden RJ, Busby AK, Hopkins JN (1992) Studies on the effects of air pollution on limestone degradation in Great Britain. Atmos Environ Part B Urban Atmos 26(2):165–181

    Article  Google Scholar 

  • Winkler E (2013) Stone in architecture: properties, durability. Springer, Berlin

    Google Scholar 

  • Zendri E, Biscontin G, Bakolas A, Finotto G (1996) Simulated study on the chemical and physical decay of the acid rain on carbonate stone. In: 8th international congress on deterioration and conservation of stone, Berlin, 30 Sept.–4 Oct. 1996 proceedings, pp 273–279

Download references

Acknowledgments

This research was funded by Reims Metropole with the Project IFEPAR (2014–2017). The authors want to thank Xavier Drothière and Alexandra Conreux for technical and analytical support. Special thanks to Arlette Thomachot for English correction and improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Eyssautier-Chuine.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Geomaterials used as construction raw materials and their environmental interactions” guest edited by Richard Přikryl, Ákos Török, Magdalini Theodoridou and Miguel Gomez-Heras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyssautier-Chuine, S., Marin, B., Thomachot-Schneider, C. et al. Simulation of acid rain weathering effect on natural and artificial carbonate stones. Environ Earth Sci 75, 748 (2016). https://doi.org/10.1007/s12665-016-5555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5555-z

Keywords

Navigation