Skip to main content
Erschienen in: Environmental Earth Sciences 15/2016

01.08.2016 | Thematic Issue

Analysis of compressed air storage caverns in rock salt considering thermo-mechanical cyclic loading

verfasst von: Kavan Khaledi, Elham Mahmoudi, Maria Datcheva, Tom Schanz

Erschienen in: Environmental Earth Sciences | Ausgabe 15/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Exploring the material response of rock salt subjected to the variable thermo-mechanical loading is essential for engineering design of compressed air energy storage (CAES) caverns. Accurate design of salt caverns requires adequate numerical simulations which take into account the most important processes affecting the development of stresses and strains. To fulfill this objective, this paper presents a two-step simulation to analyze the thermo-mechanical behavior of rock salt in the vicinity of CAES caverns. In the first step, the changes in air temperature and pressure resulted from injection and withdrawal processes are estimated using an analytical thermodynamic model. Then, in the second step, the temperature and pressure variations obtained from the analytical model are utilized as the boundary condition for a finite element model of CAES cavern. An elasto-viscoplastic creep model is employed to describe the material behavior of rock salt. In the numerical section, a computational model to simulate the thermo-mechanical behavior of rock salt around the cavern is presented. Finally, the stability and long-term serviceability of the simulated cavern are evaluated considering two extreme loading scenarios: (1) low-pressure working condition and (2) high-temperature operation. Obtained results show that both stability and serviceability of the cavern are highly affected by the internal operating pressure. Dilatancy, damage propagation, tensile failure and increasing the rate of cavern closure are the unfavorable consequences of low-pressure working condition. Similarly, the increased creep rate due to the elevated temperature accelerates the volume convergence and subsequently endangers the serviceability of the system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alkan H, Cin Y, Pusch G (2007) Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int J Rock Mech Min Sci 44:108–119CrossRef Alkan H, Cin Y, Pusch G (2007) Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int J Rock Mech Min Sci 44:108–119CrossRef
Zurück zum Zitat Aubertin M, Gill D, Ladanyi B (1991) An internal variable model for the creep of rocksalt. Rock Mech Rock Eng 24(2):81–97CrossRef Aubertin M, Gill D, Ladanyi B (1991) An internal variable model for the creep of rocksalt. Rock Mech Rock Eng 24(2):81–97CrossRef
Zurück zum Zitat Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70(8):3935–3943CrossRef Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70(8):3935–3943CrossRef
Zurück zum Zitat Bérest P, Brouard B, Jafari MK, Sambeek LV (2007) Transient behavior of salt caverns-interpretation of mechanical integrity tests. Int J Rock Mech Min Sci 44:767–786CrossRef Bérest P, Brouard B, Jafari MK, Sambeek LV (2007) Transient behavior of salt caverns-interpretation of mechanical integrity tests. Int J Rock Mech Min Sci 44:767–786CrossRef
Zurück zum Zitat Bérest P, Brouard B, Jafari MK, Sambeek LV (2011) Thermomechanical aspects of high frequency cyclic in salt storage caverns. In: International gas union research conference, Seoul, Korea, 19–21 Oct Bérest P, Brouard B, Jafari MK, Sambeek LV (2011) Thermomechanical aspects of high frequency cyclic in salt storage caverns. In: International gas union research conference, Seoul, Korea, 19–21 Oct
Zurück zum Zitat Bérest P, Djizanne H, Brouard B, Hévin G (2012) Rapid depressurization: Can they lead to irreversible damage? In: SMRI conference, Regina, Canada, 23–24 April Bérest P, Djizanne H, Brouard B, Hévin G (2012) Rapid depressurization: Can they lead to irreversible damage? In: SMRI conference, Regina, Canada, 23–24 April
Zurück zum Zitat Bérest P, Brouard B, Djakeun-Djizanne H, Hévin G (2013) Thermomechanical effects of a rapid depressurization in a gas cavern. Acta Geotech 9(1):181–186CrossRef Bérest P, Brouard B, Djakeun-Djizanne H, Hévin G (2013) Thermomechanical effects of a rapid depressurization in a gas cavern. Acta Geotech 9(1):181–186CrossRef
Zurück zum Zitat Brouard B, Frangi A, Bérest P (2011) Mechanical stability of a cavern submitted to high-frequency cycles. In: SMRI conference, Texas, USA, 18–19 April Brouard B, Frangi A, Bérest P (2011) Mechanical stability of a cavern submitted to high-frequency cycles. In: SMRI conference, Texas, USA, 18–19 April
Zurück zum Zitat Brouard B, Bérest P, de Greef V, Béraud J, Lheur C, Hertz E (2013) Creep closure rate of a shallow salt cavern at Gellenoncourt, France. Int J Rock Mech Min Sci 62:42–50 Brouard B, Bérest P, de Greef V, Béraud J, Lheur C, Hertz E (2013) Creep closure rate of a shallow salt cavern at Gellenoncourt, France. Int J Rock Mech Min Sci 62:42–50
Zurück zum Zitat Carter NL, Hansen FD (1983) Creep of rocksalt. Tectonophysics 92(4):275–333CrossRef Carter NL, Hansen FD (1983) Creep of rocksalt. Tectonophysics 92(4):275–333CrossRef
Zurück zum Zitat Code–Bright user’s guide (2010) Department of the Geotechnical Engineering and Geosciences of the Technical University of Catalonia (UPC) Code–Bright user’s guide (2010) Department of the Geotechnical Engineering and Geosciences of the Technical University of Catalonia (UPC)
Zurück zum Zitat Cortogino F, Mohmeyer KU, Scharf R (2001) Huntorf CAES: more than 20 years of successful operation. In: SMRI spring meeting, Orlando, 23–24 April, pp 351–357 Cortogino F, Mohmeyer KU, Scharf R (2001) Huntorf CAES: more than 20 years of successful operation. In: SMRI spring meeting, Orlando, 23–24 April, pp 351–357
Zurück zum Zitat Cosenza P, Ghoreychi M (1999) Effects of very low permeability on the long-term evolution of a storage cavern in rock salt. Int J Rock Mech Min Sci 36(4):527–533 Cosenza P, Ghoreychi M (1999) Effects of very low permeability on the long-term evolution of a storage cavern in rock salt. Int J Rock Mech Min Sci 36(4):527–533
Zurück zum Zitat Cristescu N (1987) Elastic viscoplastic constitutive equations for rock. Int J Rock Mech Min Sci Geomech 24(5):271–281CrossRef Cristescu N (1987) Elastic viscoplastic constitutive equations for rock. Int J Rock Mech Min Sci Geomech 24(5):271–281CrossRef
Zurück zum Zitat Cristescu N (1993) A general constitutive equation for transient and stationary creep of rock salt. Int J Rock Mech Min Sci Geomech 30(2):125–139CrossRef Cristescu N (1993) A general constitutive equation for transient and stationary creep of rock salt. Int J Rock Mech Min Sci Geomech 30(2):125–139CrossRef
Zurück zum Zitat Cristescu N, Hunsche U (1998) Time effects in rock mechanics. Wiley, Chichester Cristescu N, Hunsche U (1998) Time effects in rock mechanics. Wiley, Chichester
Zurück zum Zitat Deng J, Yang Q, Liu Y (2014) Time-dependent behaviour and stability evaluation of gas storage caverns in salt rock based on deformation reinforcement theory. Tunn Undergr Sp Technol 42:277–292CrossRef Deng J, Yang Q, Liu Y (2014) Time-dependent behaviour and stability evaluation of gas storage caverns in salt rock based on deformation reinforcement theory. Tunn Undergr Sp Technol 42:277–292CrossRef
Zurück zum Zitat Desai C, Varadarajan A (1987) A constitutive model for quasi-static behavior of rock salt. J Geophys Res 92:445–456CrossRef Desai C, Varadarajan A (1987) A constitutive model for quasi-static behavior of rock salt. J Geophys Res 92:445–456CrossRef
Zurück zum Zitat Desai C, Zhang D (1987) Viscoplastic model for geologic material with generalized flow rule. Int J Numer Anal Methods 11:603–627CrossRef Desai C, Zhang D (1987) Viscoplastic model for geologic material with generalized flow rule. Int J Numer Anal Methods 11:603–627CrossRef
Zurück zum Zitat Fuenkajorn K, Serata S (1993) Numerical simulation of strain-softening and dilation of rock salt. Int J Rock Mech Min Sci 30(7):1303–1306CrossRef Fuenkajorn K, Serata S (1993) Numerical simulation of strain-softening and dilation of rock salt. Int J Rock Mech Min Sci 30(7):1303–1306CrossRef
Zurück zum Zitat Günther R, Salzer K (2007) A model for rock salt, describing transient, stationary, and accelerated creep and dilatancy. In: 6th conference on the mechanical behavior of salt—SALTMECH6, Hannover, Germany, 22–25 May Günther R, Salzer K (2007) A model for rock salt, describing transient, stationary, and accelerated creep and dilatancy. In: 6th conference on the mechanical behavior of salt—SALTMECH6, Hannover, Germany, 22–25 May
Zurück zum Zitat Hampel A, Schulze O (2007) The composite dilatancy model: a constitutive model for the mechanical behavior of rock salt. In: 6th conference on the mechanical behavior of salt—SALTMECH6, Hannover, Germany, 22–25 May Hampel A, Schulze O (2007) The composite dilatancy model: a constitutive model for the mechanical behavior of rock salt. In: 6th conference on the mechanical behavior of salt—SALTMECH6, Hannover, Germany, 22–25 May
Zurück zum Zitat Heusermann S, Rolfs O, Schmidt U (2003) Nonlinear finite element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model. Comput Struct 81:629–638CrossRef Heusermann S, Rolfs O, Schmidt U (2003) Nonlinear finite element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model. Comput Struct 81:629–638CrossRef
Zurück zum Zitat Hou Z (2003) Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int J Rock Mech Min Sci 40:725–738CrossRef Hou Z (2003) Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. Int J Rock Mech Min Sci 40:725–738CrossRef
Zurück zum Zitat Hunsche U, Hampel A (1999) Rock salt—the mechanical properties of the host rock material for radio active waste repository. Eng Geol 52:271–291CrossRef Hunsche U, Hampel A (1999) Rock salt—the mechanical properties of the host rock material for radio active waste repository. Eng Geol 52:271–291CrossRef
Zurück zum Zitat Jafari MK, Brouard B, Bérest P (2011) Multi-cycle gas storage in salt caverns. In: SMRI conference, York, UK, 3–4 Oct Jafari MK, Brouard B, Bérest P (2011) Multi-cycle gas storage in salt caverns. In: SMRI conference, York, UK, 3–4 Oct
Zurück zum Zitat Khaledi K, Mahmoudi E, Datcheva M, König D, Schanz T (2016a) Sensitivity analysis and parameter identification of a time dependent constitutive model for rock salt. J Comput Appl Math 293:128–138CrossRef Khaledi K, Mahmoudi E, Datcheva M, König D, Schanz T (2016a) Sensitivity analysis and parameter identification of a time dependent constitutive model for rock salt. J Comput Appl Math 293:128–138CrossRef
Zurück zum Zitat Khaledi K, Mahmoudi E, Datcheva M, Schanz T (2016b) Stability and serviceability of underground energy storage caverns in rock salt subjected to mechanical cyclic loading. Int J Rock Mech Min Sci 86:115–131 Khaledi K, Mahmoudi E, Datcheva M, Schanz T (2016b) Stability and serviceability of underground energy storage caverns in rock salt subjected to mechanical cyclic loading. Int J Rock Mech Min Sci 86:115–131
Zurück zum Zitat Kim HM, Rutqvist J, Ryu DW, Choi BH, Sunwoo C, Song WK (2012) Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance. Appl Energy 92:653–667CrossRef Kim HM, Rutqvist J, Ryu DW, Choi BH, Sunwoo C, Song WK (2012) Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance. Appl Energy 92:653–667CrossRef
Zurück zum Zitat Kushnir R, Dayan A, Ullmann A (2012) Temperature and pressure variations within compressed air energy storage caverns. Int J Heat Mass Transf 55(21–22):5616–5630CrossRef Kushnir R, Dayan A, Ullmann A (2012) Temperature and pressure variations within compressed air energy storage caverns. Int J Heat Mass Transf 55(21–22):5616–5630CrossRef
Zurück zum Zitat Martín LB, Rutqvist J, Birkholzer JT (2015) Long-term modeling of the thermalhydraulicmechanical response of a generic salt repository for heat-generating nuclear waste. Eng Geol 193:198–211CrossRef Martín LB, Rutqvist J, Birkholzer JT (2015) Long-term modeling of the thermalhydraulicmechanical response of a generic salt repository for heat-generating nuclear waste. Eng Geol 193:198–211CrossRef
Zurück zum Zitat Maton JP, Zhao L, Brouwer J (2013) Dynamic modeling of compressed gas energy storage to complement renewable wind power intermittency. Int J Hydrogen Energy 38(19):7867–7880CrossRef Maton JP, Zhao L, Brouwer J (2013) Dynamic modeling of compressed gas energy storage to complement renewable wind power intermittency. Int J Hydrogen Energy 38(19):7867–7880CrossRef
Zurück zum Zitat Minkley M, Muehlbauer J (2007) Constitutive models to describe the mechanical behavior of salt rocks and the imbedded weakness planes. In: 6th conference on the mechanical behavior of salt—SALTMECH6, Hannover, Germany, 22–25 May Minkley M, Muehlbauer J (2007) Constitutive models to describe the mechanical behavior of salt rocks and the imbedded weakness planes. In: 6th conference on the mechanical behavior of salt—SALTMECH6, Hannover, Germany, 22–25 May
Zurück zum Zitat Nazary S, Mirzabozorg H, Noorzad H (2013) Modeling time-dependent behavior of gas caverns in rock salt considering creep, dilatancy and failure. Tunn Undergr Sp Technol 33:171–185CrossRef Nazary S, Mirzabozorg H, Noorzad H (2013) Modeling time-dependent behavior of gas caverns in rock salt considering creep, dilatancy and failure. Tunn Undergr Sp Technol 33:171–185CrossRef
Zurück zum Zitat Olivella S, Gens A (2002) A constitutive model for crushed salt. Int J Numer Anal Methods Geomech 26:719–746CrossRef Olivella S, Gens A (2002) A constitutive model for crushed salt. Int J Numer Anal Methods Geomech 26:719–746CrossRef
Zurück zum Zitat Olivella S, Gens A, Carrera J, Alonso E (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Comput 13:87–112CrossRef Olivella S, Gens A, Carrera J, Alonso E (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Comput 13:87–112CrossRef
Zurück zum Zitat Perzyna P (1966) Fundamental problems in viscoplasticity. Rec Adv Appl Mech 9:243–377CrossRef Perzyna P (1966) Fundamental problems in viscoplasticity. Rec Adv Appl Mech 9:243–377CrossRef
Zurück zum Zitat Pudewills A, Droste J (2003) Numerical modeling of the thermomechanical behavior of a large-scale underground experiment. Comput Struct 81(8–11):911–918CrossRef Pudewills A, Droste J (2003) Numerical modeling of the thermomechanical behavior of a large-scale underground experiment. Comput Struct 81(8–11):911–918CrossRef
Zurück zum Zitat Raju M, Khaitan SK (2012) Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant. Appl Energy 89(1):474–481CrossRef Raju M, Khaitan SK (2012) Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant. Appl Energy 89(1):474–481CrossRef
Zurück zum Zitat Rutqvist J, Kim HM, Ryu DW, Synn JH, Song WK (2012) Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns. Int J Rock Mech Min Sci 52:71–81CrossRef Rutqvist J, Kim HM, Ryu DW, Synn JH, Song WK (2012) Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns. Int J Rock Mech Min Sci 52:71–81CrossRef
Zurück zum Zitat Schulze O, Popp T, Kern H (2001) Development of damage and permeability in deforming rock salt. Eng Geol 61:163–180CrossRef Schulze O, Popp T, Kern H (2001) Development of damage and permeability in deforming rock salt. Eng Geol 61:163–180CrossRef
Zurück zum Zitat Serbin K, Ślizowski J, Urbańczyk K, Nagy S (2015) The influence of thermodynamic effects on gas storage cavern convergence. Int J Rock Mech Min Sci 79:166–171 Serbin K, Ślizowski J, Urbańczyk K, Nagy S (2015) The influence of thermodynamic effects on gas storage cavern convergence. Int J Rock Mech Min Sci 79:166–171
Zurück zum Zitat Tryller H, Musso L (2006) Controlled cavern leaching in bedded salt without blanket in Timpa del Salto. In: SMRI spring meeting, Brussels, Belgium, 30 April–3 May Tryller H, Musso L (2006) Controlled cavern leaching in bedded salt without blanket in Timpa del Salto. In: SMRI spring meeting, Brussels, Belgium, 30 April–3 May
Zurück zum Zitat Wang T, Yan X, Yang H, Yang X, Jiang T, Zhao S (2013) A new shape design method of salt cavern used as underground gas storage. Appl Energy 104:50–61CrossRef Wang T, Yan X, Yang H, Yang X, Jiang T, Zhao S (2013) A new shape design method of salt cavern used as underground gas storage. Appl Energy 104:50–61CrossRef
Zurück zum Zitat Wang T, Ma H, Yang C, Shi X, Daemen J (2015) Gas seepage around bedded salt cavern gas storage. J Nat Gas Sci Eng 26:61–71CrossRef Wang T, Ma H, Yang C, Shi X, Daemen J (2015) Gas seepage around bedded salt cavern gas storage. J Nat Gas Sci Eng 26:61–71CrossRef
Zurück zum Zitat Waversik WR, Hanuum DW (1980) Mechanical behavior of New Mexico rock salt in triaxial compression up to 200 °C. J Geophys Res 85(B2):891–900CrossRef Waversik WR, Hanuum DW (1980) Mechanical behavior of New Mexico rock salt in triaxial compression up to 200 °C. J Geophys Res 85(B2):891–900CrossRef
Zurück zum Zitat Weidinger P, Blum Hampel W A, Hunsche U (1997) Creep behavior of natural rock salt and its description with the composite model. Mater Sci Eng A 234–236:646–648CrossRef Weidinger P, Blum Hampel W A, Hunsche U (1997) Creep behavior of natural rock salt and its description with the composite model. Mater Sci Eng A 234–236:646–648CrossRef
Zurück zum Zitat Xia C, Zhou Y, Zhou S, Zhang P, Wang F (2015) A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns. Renew Energy 74:718–726CrossRef Xia C, Zhou Y, Zhou S, Zhang P, Wang F (2015) A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns. Renew Energy 74:718–726CrossRef
Zurück zum Zitat Xiong J, Huang X, Ma H (2015) Gas leakage mechanism in bedded salt rock storage cavern considering damaged interface. Petroleum 1(4):366–372CrossRef Xiong J, Huang X, Ma H (2015) Gas leakage mechanism in bedded salt rock storage cavern considering damaged interface. Petroleum 1(4):366–372CrossRef
Zurück zum Zitat Yang C, Wang T, Li Y, Yang H, Li J, Qu D, Xu B, Yang Y, Daemen J (2015) Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl Energy 137:467–481CrossRef Yang C, Wang T, Li Y, Yang H, Li J, Qu D, Xu B, Yang Y, Daemen J (2015) Feasibility analysis of using abandoned salt caverns for large-scale underground energy storage in China. Appl Energy 137:467–481CrossRef
Metadaten
Titel
Analysis of compressed air storage caverns in rock salt considering thermo-mechanical cyclic loading
verfasst von
Kavan Khaledi
Elham Mahmoudi
Maria Datcheva
Tom Schanz
Publikationsdatum
01.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 15/2016
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-016-5970-1

Weitere Artikel der Ausgabe 15/2016

Environmental Earth Sciences 15/2016 Zur Ausgabe