Skip to main content

Advertisement

Log in

Modeling the hydromechanical responses of sandwich structure faults during underground fluid injection

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Injection or withdrawal of fluid at depth may trigger felt seismicity. At a site with natural faults or artificial fracturing cracks, understanding how to avoid triggering felt earthquakes plays a crucial role in the success of underground anthropogenic activities, such as subsurface energy storage and CO2 geological sequestration. With the application of a hydromechanical coupling finite element model, we examine the potential of injection-induced pore pressure change and the responding fault slippage along the fault surface in two injection scenarios: multi-layer injection (MLI) and single-layer injection (SLI). The results indicate that fault slippage buildup is mainly located along the portion of the fault intersecting the reservoir. MLI leads to a relatively lower level of induced seismicity compared with SLI. In the fault zone, the external zone and core of the fault exert a connection effect and barrier effect on the hydraulic connectivity, respectively. After 20 years of injection, the pore pressure in the core presents a smaller change than that in the internal and external zones. Furthermore, an uncertainty analysis was performed to evaluate the statistical significance of permeability in the caprock, reservoir, and fault (core, internal zone, and external zone), and only the permeability in the reservoir significantly affects the level of fault slippage based on the fault zone hydromechanics associated with subsurface energy storage and CO2 geological sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ake J, Mahrer K, O’Connell D, Block L (2005) Deep-injection and closely monitored induced seismicity at paradox valley, Colorado. Bull Seismol Soc Am 95:664–683

    Article  Google Scholar 

  • Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28:168–178

    Article  Google Scholar 

  • Bohloli B, Choi JC, Skurtveit E, Grande L, Park J, Vannest M (2015) Criteria of fault geomechanical stability during a pressure build-up. IEAGHG report 2015/04. Cheltenham, UK

  • Box GE, Hunter JS (1957) Multi-factor experimental designs for exploring response surfaces. Ann Math Stat 18:195–241

    Article  Google Scholar 

  • Cameron DA, Durlofsky LJ (2012) Optimization of well placement, CO2 injection rates, and brine cycling for geological carbon sequestration. Int J Greenh Gas Control 10:100–112. doi:10.1016/j.ijggc.2012.06.003

    Article  Google Scholar 

  • Cappa F, Rutqvist J (2011a) Impact of CO2 geological sequestration on the nucleation of earthquakes. Geophys Res Lett 38:L17313. doi:10.1029/2011gl048487

    Article  Google Scholar 

  • Cappa F, Rutqvist J (2011b) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenh Gas Control 5:336–346

    Article  Google Scholar 

  • Carcione JM, Da Col F, Currenti G, Cantucci B (2015) Modeling techniques to study CO2-injection induced micro-seismicity. Int J Greenh Gas Control 42:246–257. doi:10.1016/j.ijggc.2015.08.006

    Article  Google Scholar 

  • Chen Z, Liao X, Zhao X, Feng X, Zang J, He L (2015) A new analytical method based on pressure transient analysis to estimate carbon storage capacity of depleted shales: a case study. Int J Greenh Gas Control 42:46–58. doi:10.1016/j.ijggc.2015.07.030

    Article  Google Scholar 

  • Class H et al (2009) A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13:409–434. doi:10.1007/s10596-009-9146-x

    Article  Google Scholar 

  • Cody BM, Baù D, González-Nicolás A (2015) Stochastic injection-strategy optimization for the preliminary assessment of candidate geological storage sites. Hydrogeol J 23:1229–1245. doi:10.1007/s10040-015-1250-5

    Article  Google Scholar 

  • Cornet FH (2016) Seismic and aseismic motions generated by fluid injections. Geomech Energy Environ 5:42–54

    Article  Google Scholar 

  • Coussy O (2004) Poromechanics. Wiley, New York

    Google Scholar 

  • Davis SD, Pennington WD (1989) Induced seismic deformation in the Cogdell oil field of west Texas. Bull Seismol Soc Am 79:1477–1495

    Google Scholar 

  • Dempsey D, Kelkar S, Pawar R, Keating E, Coblentz D (2014) Modeling caprock bending stresses and their potential for induced seismicity during CO2 injection. Int J Greenh Gas Control 22:223–236. doi:10.1016/j.ijggc.2014.01.005

    Article  Google Scholar 

  • Dempsey D, O’Malley D, Pawar R (2015) Reducing uncertainty associated with CO2 injection and brine production in heterogeneous formations. Int J Greenh Gas Control 37:24–37

    Article  Google Scholar 

  • Doughty C (2009) Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation. Transp Porous Media 82:49–76. doi:10.1007/s11242-009-9396-z

    Article  Google Scholar 

  • Ellsworth WL (2013) Injection-induced earthquakes. Science 341:142–150. doi:10.1126/science.1225942

    Article  Google Scholar 

  • Figueiredo B, Tsang C-F, Rutqvist J, Bensabat J, Niemi A (2015) Coupled hydro-mechanical processes and fault reactivation induced by CO2 injection in a three-layer storage formation. Int J Greenh Gas Control 39:432–448. doi:10.1016/j.ijggc.2015.06.008

    Article  Google Scholar 

  • Fujii T, Funatsu T, Oikawa Y, Sorai M, Lei X (2015) Evolution of permeability during fracturing processes in rocks under conditions of geological storage of CO2. Mater Trans 56:679–686

    Article  Google Scholar 

  • Genmo Z, Huaran C, Shuqin M, Deyuan Z (1995) Research on earthquakes induced by water injection in China. Induced seismicity. Springer, Berlin, pp 59–68

    Chapter  Google Scholar 

  • Gerstenberger M et al (2013) Induced seismicity and its implications for CO2 storage risk. IEAGHG report 2013/09. Cheltenham, UK

  • Guglielmi Y, Cappa F, Avouac JP, Henry P, Elsworth D (2015) Induced seismicity. Seismicity triggered by fluid injection-induced aseismic slip. Science 348:1224–1226. doi:10.1126/science.aab0476

    Article  Google Scholar 

  • Handin J, Hager RV Jr, Friedman M, Feather JN (1963) Experimental deformation of sedimentary rocks under confining pressure: pore pressure tests. Bull Am Assoc Pet Geol 47:717–755

    Google Scholar 

  • Hanks TC (1979) B values and ω − γ seismic source models: implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion. J Geophys Res Solid Earth 84:2235–2242

    Article  Google Scholar 

  • Healy JH (1968) The denver earthquakes. Science 161:1301–1310

    Article  Google Scholar 

  • Hillis RR (2001) Coupled changes in pore pressure and stress in oil fields and sedimentary basins. Pet Geosci 7:419–425

    Article  Google Scholar 

  • Hoek E (1990) Estimating Mohr-Coulomb friction and cohesion values from the Hoek-Brown failure criterion. International journal of rock mechanics and mining sciences and geomechanics abstracts. Elsevier, Amsterdam, pp 227–229

    Google Scholar 

  • Hubbert M, Rubey W (1959) Role of fluid pressure in mechanics of overthrust faulting : I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Geol Soc Am Bull 70:115–166

    Article  Google Scholar 

  • Huber EJ, Stroock AD, Koch DL (2016) Analysis of a time dependent injection strategy to accelerate the residual trapping of sequestered CO2 in the geologic subsurface. Int J Greenh Gas Control 44:185–198. doi:10.1016/j.ijggc.2015.11.024

    Article  Google Scholar 

  • Hunter WG, Hunter JS, George E (1978) Statistics for experimenters: an introduction to design, data analysis, and model building. Wiley, New York

    Google Scholar 

  • IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge, UK

  • Iversen GR, Norpoth H (1987) Analysis of variance, vol 1. Sage, London

    Book  Google Scholar 

  • Jaeger JC, Cook NG, Zimmerman R (2009) Fundamentals of rock mechanics. Wiley, New York

    Google Scholar 

  • Jeanne P, Guglielmi Y, Cappa F, Rinaldi AP, Rutqvist J (2014) The effects of lateral property variations on fault-zone reactivation by fluid pressurization: application to CO2 pressurization effects within major and undetected fault zones. J Struct Geol 62:97–108. doi:10.1016/j.jsg.2014.01.017

    Article  Google Scholar 

  • Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65:1073–1095

    Google Scholar 

  • Karimnezhad M, Jalalifar H, Kamari M (2014) Investigation of caprock integrity for CO2 sequestration in an oil reservoir using a numerical method. J Nat Gas Sci Eng 21:1127–1137. doi:10.1016/j.jngse.2014.10.031

    Article  Google Scholar 

  • Khuri AI, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdiscip Rev Comput Stat 2:128–149. doi:10.1002/wics.73

    Article  Google Scholar 

  • Labuz JF, Zang A (2012) Mohr–Coulomb failure criterion. Rock Mech Rock Eng 45:975–979. doi:10.1007/s00603-012-0281-7

    Article  Google Scholar 

  • Lee T-C (1996) Pore-pressure rise, frictional strength, and fault slip: one-dimensional interaction models. Geophys J Int 125:371–384

    Article  Google Scholar 

  • Lei X, Ma S, Chen W, Pang C, Zeng J, Jiang B (2013) A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan basin, China. J Geophys Res Solid Earth 118:4296–4311

    Article  Google Scholar 

  • Lei X, Yu G, Ma S, Wen X, Wang Q (2008) Earthquakes induced by water injection at ~3 km depth within the Rongchang gas field, Chongqing, China. J Geophys Res Solid Earth 113:B10310. doi:10.1029/2008JB005604

    Article  Google Scholar 

  • Li Q, Liu G, Liu X, Li X (2013) Application of a health, safety, and environmental screening and ranking framework to the Shenhua CCS project. Int J Greenh Gas Control 17:504–514. doi:10.1016/j.ijggc.2013.06.005

    Article  Google Scholar 

  • Li Q, Fei W, Liu X, Wei X, Jing M, Li X (2014) Challenging combination of CO2 geological storage and coal mining in the Ordos basin, China. Greenh Gases Sci Technol 4:452–467. doi:10.1002/ghg.1408

    Article  Google Scholar 

  • Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, vol 705. Wiley, New York

    Google Scholar 

  • Nicot J-P, Meckel TA, Carr DA, Oldenburg CM (2014) Impact of induced seismic events on seal integrity, texas gulf coast. Energy Proced 63:4807–4815. doi:10.1016/j.egypro.2014.11.511

    Article  Google Scholar 

  • Nuzzo RG (2014) Scientific method: statistical errors. Nature 506:150–152

    Article  Google Scholar 

  • Odell P, Lindsey KC (2010) Uncertainty management in a major CO2 EOR project. In: Abu Dhabi international petroleum exhibition and conference, Abu Dhabi, UAE, 1–4 November, 2010. doi:10.2118/137998-MS

  • Pan I, Babaei M, Korre A, Durucan S (2014) A multi-period injection strategy based optimisation approach using kriging meta-models for CO2 storage technologies. Energy Proced 63:3492–3499. doi:10.1016/j.egypro.2014.11.378

    Article  Google Scholar 

  • Peirce JW et al (2004) Is the geosphere secure? Assessing the presence of deep-penetrating faults in the IEA Weyburn CO2 study area, SE Saskatchewan. In: CSPG/CSEG/CWLS Convention 2004, Calgary, Alberta, Canada, May 31–June 4, 2004

  • Pereira LC, Guimarães LJN, Horowitz B, Sánchez M (2014) Coupled hydro-mechanical fault reactivation analysis incorporating evidence theory for uncertainty quantification. Comput Geotech 56:202–215. doi:10.1016/j.compgeo.2013.12.007

    Article  Google Scholar 

  • Raleigh C, Healy J, Bredehoeft J (1976) An experiment in earthquake control at Rangely, Colorado. Science 191:1230–1237

    Article  Google Scholar 

  • Réveillère A, Rohmer J, Manceau J-C (2012) Hydraulic barrier design and applicability for managing the risk of CO2 leakage from deep saline aquifers. Int J Greenh Gas Control 9:62–71. doi:10.1016/j.ijggc.2012.02.016

    Article  Google Scholar 

  • Rice JR, Cleary MP (1976) Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14:227–241

    Article  Google Scholar 

  • Rinaldi AP, Vilarrasa V, Rutqvist J, Cappa F (2015) Fault reactivation during CO2 sequestration: effects of well orientation on seismicity and leakage. Greenh Gases Sci Technol 5:645–656. doi:10.1002/ghg.1511

    Article  Google Scholar 

  • Roche V, Baan MVD (2014) Geomechanical modeling of induced seismicity due to fluid injection. GeoConvention 283-GC2014:1–4

    Google Scholar 

  • Rohmer J, Allanic C, Bourgine B (2014) Improving our knowledge on the hydro-chemo-mechanical behaviour of fault zones in the context of CO2 geological storage. Energy Proced 63:3371–3378. doi:10.1016/j.egypro.2014.11.366

    Article  Google Scholar 

  • Rohmer J, Loschetter A, Raucoules D, de Michele M, Raffard D, Le Gallo Y (2015) Revealing the surface deformation induced by deep CO2 injection in vegetated/agricultural areas: the combination of corner-reflectors, reservoir simulations and spatio-temporal statistics. Eng Geol 197:188–197. doi:10.1016/j.enggeo.2015.08.005

    Article  Google Scholar 

  • Rozhko A, Tronvoll J (2010) Scaling of fluid-induced seismicity by coulomb stress transfer model. In: 72nd EAGE conference and exhibition incorporating SPE EUROPEC 2010, Barcelona, Spain, 14 June 2010. doi:10.3997/2214-4609.201400773

  • Rudnicki JW, Rice JR (2006) Effective normal stress alteration due to pore pressure changes induced by dynamic slip propagation on a plane between dissimilar materials. J Geophys Res 111:B10308. doi:10.1029/2006jb004396

    Article  Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Shamshiri H, Jafarpour B (2012) Controlled CO2 injection into heterogeneous geologic formations for improved solubility and residual trapping. Water Resour Res 48:W02530. doi:10.1029/2011wr010455

    Article  Google Scholar 

  • Shapiro S, Patzig R, Rothert E, Rindschwentner J (2003) Triggering of seismicity by pore-pressure perturbations: permeability-related signatures of the phenomenon. Pure appl Geophys 160:1051–1066

    Article  Google Scholar 

  • Shen X (2010) Examples and applications of ABAQUS in energy engineering. China Machine Press, Beijing

    Google Scholar 

  • Sorai M, Lei X, Nishi Y, Ishido T, Nakao S (2015) CO2 geological storage. In: Handbook of climate change mitigation and adaptation. Springer, New York. doi:10.1007/978-1-4614-6431-0_85-1

  • Streit JE, Cox SF (2001) Fluid pressures at hypocenters of moderate to large earthquakes. J Geophys Res Solid Earth (1978–2012) 106:2235–2243

    Article  Google Scholar 

  • Streit JE, Hillis RR (2004) Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy 29:1445–1456. doi:10.1016/j.energy.2004.03.078

    Article  Google Scholar 

  • Terzaghi K (1943) Theoretical soil mechanics, 1st edn, vol 528. Wiley, New York

  • Urpi L, Rinaldi AP, Rutqvist J, Cappa F, Spiers CJ (2016) Dynamic simulation of CO2-injection-induced fault rupture with slip-rate dependent friction coefficient. Geomech Energy Environ. doi:10.1016/j.gete.2016.04.003

    Google Scholar 

  • Vilarrasa V (2014) Impact of CO2 injection through horizontal and vertical wells on the caprock mechanical stability. Int J Rock Mech Min Sci 66:151–159. doi:10.1016/j.ijrmms.2014.01.001

    Google Scholar 

  • Vilarrasa V, Carrera J (2015) Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO2 could leak. Proc Natl Acad Sci 112:5938–5943

    Article  Google Scholar 

  • Wei XC, Li Q, Li X-Y, Sun Y-K (2015a) Impact indicators for caprock integrity and induced seismicity in CO2 geosequestration: insights from uncertainty analyses. Nat Hazards 81:1–21. doi:10.1007/s11069-015-2063-5

    Article  Google Scholar 

  • Wei XC, Li Q, Li X-Y, Sun Y-K, Liu XH (2015b) Uncertainty analysis of impact indicators for the integrity of combined caprock during CO2 geosequestration. Eng Geol 196:37–46. doi:10.1016/j.enggeo.2015.06.023

    Article  Google Scholar 

  • Yamashita T (2007) Postseismic quasi-static fault slip due to pore pressure change on a bimaterial interface. J Geophys Res 112:B05304. doi:10.1029/2006jb004667

    Article  Google Scholar 

  • Yang D, Zeng R, Zhang Y, Wang Z, Wang S, Jin C (2012) Numerical simulation of multiphase flows of CO2 storage in saline aquifers in Daqingzijing oilfield, China. Clean Techn Environ Policy 14:609–618. doi:10.1007/s10098-011-0420-y

    Article  Google Scholar 

  • Zhou X, Burbey TJ (2014a) Deformation characteristics of a clayey interbed during fluid injection. Eng Geol 183:185–192. doi:10.1016/j.enggeo.2014.10.001

    Article  Google Scholar 

  • Zhou X, Burbey TJ (2014b) How horizontal surface deformation during fluid injection correlates to reservoir permeability setting. Environ Eng Geosci 3:305–320

    Article  Google Scholar 

  • Zhou X, Burbey TJ (2014c) Pore-pressure response to sudden fault slip for three typical faulting regimes. Bull Seismol Soc Am 104:793–808

    Article  Google Scholar 

  • Zhu Q, Zhou Q, Li X (2016) Numerical simulation of displacement characteristics of CO2 injected in pore-scale porous media. J Rock Mech Geotech Eng 8:87–92. doi:10.1016/j.jrmge.2015.08.004

    Article  Google Scholar 

  • Zoback MD, Gorelick SM (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci USA 109:10164–10168. doi:10.1073/pnas.1202473109

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the funding support from National Natural Science Foundation of China (Grant No. 41274111). Xiaying Li thanks to the Grant of China Scholarship Council for collaborative research in AIST Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Li.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Subsurface Energy Storage,” guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Appendix

Appendix

See Table 4.

Table 4 Simulation runs and results used in the statistical analysis process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Li, Q., Li, X. et al. Modeling the hydromechanical responses of sandwich structure faults during underground fluid injection. Environ Earth Sci 75, 1155 (2016). https://doi.org/10.1007/s12665-016-5975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5975-9

Keywords

Navigation