Skip to main content
Erschienen in: Environmental Earth Sciences 19/2020

01.10.2020 | Original Article

Multivariate modeling of flood characteristics using Vine copulas

Erschienen in: Environmental Earth Sciences | Ausgabe 19/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Vine copulas provide a great deal of flexibility in modeling complex dependence structures between the variables. In spite of its importance, very limited attention has been paid in hydrology field. In the present study, multivariate modelling of flood characteristics was performed using traditional Archimedean and Elliptical and Vine copulas. In the first phase, flood characteristics [peak (Q), volume (V) and duration (D)] were computed from daily streamflow of 18 stations located in the Euphrates River Basin, Turkey. Based on various model selection criteria, the gamma and Weibull distributions for Q series, the logistic and generalized extreme value distributions for V series and the logistic, log-logistic and generalized extreme value distributions for D series were mostly found to be the best appropriate univariate models. In the second phase, the considered copulas were evaluated for modeling joint distribution of flood QVD triplets at each station. On evaluating their performance by various copula selection methods, graphical procedures and tail dependence analysis, the Vine copulas have been identified as the most valid models. In last phase, conditional and joint return periods of different flood Q, V and D combinations were estimated and the spatial distribution of the return periods were drawn using Geographic Information Systems tool.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur Math Econ 44:182–198 Aas K, Czado C, Frigessi A, Bakken H (2009) Pair-copula constructions of multiple dependence. Insur Math Econ 44:182–198
Zurück zum Zitat Adamson PT, Metcalfe AV, Parmentier B (1999) Bivariate extreme value distributions: An application of the Gibbs sampler to the analysis of floods. Water Resour Res 35:2825–2832 Adamson PT, Metcalfe AV, Parmentier B (1999) Bivariate extreme value distributions: An application of the Gibbs sampler to the analysis of floods. Water Resour Res 35:2825–2832
Zurück zum Zitat Aksoy H, Kurt I, Eris E (2009) Filtered smoothed minima baseflow separation method. J Hydrol 372:94–101 Aksoy H, Kurt I, Eris E (2009) Filtered smoothed minima baseflow separation method. J Hydrol 372:94–101
Zurück zum Zitat Aksoy H, Unal NE, Pektas AO (2008) Smoothed minima baseflow separation tool for perennial and intermittent streams. Hydrol Process 22:4467–4476 Aksoy H, Unal NE, Pektas AO (2008) Smoothed minima baseflow separation tool for perennial and intermittent streams. Hydrol Process 22:4467–4476
Zurück zum Zitat Baidya S, Singh A, Panda SN (2020) Flood frequency analysis. Nat Hazards 100:1137–1158 Baidya S, Singh A, Panda SN (2020) Flood frequency analysis. Nat Hazards 100:1137–1158
Zurück zum Zitat Bedford T, Cooke RM (2002) Vines - A new graphical model for dependent random variables. Ann Stat 30:1031–1068 Bedford T, Cooke RM (2002) Vines - A new graphical model for dependent random variables. Ann Stat 30:1031–1068
Zurück zum Zitat Bezak N, Mikos M, Sraj M (2014) Trivariate frequency analyses of peak discharge, hydrograph volume and suspended sediment concentration data using copulas. Water Resour Manag 28:2195–2212 Bezak N, Mikos M, Sraj M (2014) Trivariate frequency analyses of peak discharge, hydrograph volume and suspended sediment concentration data using copulas. Water Resour Manag 28:2195–2212
Zurück zum Zitat Caperaa P, Fougeres AL, Genest C (1997) A non-parametric estimation procedure for bivariate extreme value copulas. Biometrika 84:567–577 Caperaa P, Fougeres AL, Genest C (1997) A non-parametric estimation procedure for bivariate extreme value copulas. Biometrika 84:567–577
Zurück zum Zitat Chowdhary H, Escobar LA, Singh VP (2011) Identification of suitable copulas for bivariate frequency analysis of flood peak and flood volume data. Hydrol Res 42:193–216 Chowdhary H, Escobar LA, Singh VP (2011) Identification of suitable copulas for bivariate frequency analysis of flood peak and flood volume data. Hydrol Res 42:193–216
Zurück zum Zitat Coles SG, Heffernan JE, Tawn JA (1999) Dependence measures for extreme value analyses. Extremes 2:339–365 Coles SG, Heffernan JE, Tawn JA (1999) Dependence measures for extreme value analyses. Extremes 2:339–365
Zurück zum Zitat Daneshkhah A, Remesan R, Chatrabgoun O, Holman IP (2016) Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model. J Hydrol 540:469–487 Daneshkhah A, Remesan R, Chatrabgoun O, Holman IP (2016) Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model. J Hydrol 540:469–487
Zurück zum Zitat De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. J Hydrol Eng 10:50–57 De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. J Hydrol Eng 10:50–57
Zurück zum Zitat Escalante-Sandoval C (2007) Application of bivariate extreme value distribution to flood frequency analysis: a case study of Northwestern Mexico. Nat Hazards 42:37–46 Escalante-Sandoval C (2007) Application of bivariate extreme value distribution to flood frequency analysis: a case study of Northwestern Mexico. Nat Hazards 42:37–46
Zurück zum Zitat Favre AC, El Adlouni S, Perreault L, Thiemonge N, Bobee B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40:1–12 Favre AC, El Adlouni S, Perreault L, Thiemonge N, Bobee B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40:1–12
Zurück zum Zitat Fisher NI, Switzer P (1985) Chi-plots for assessing dependence. Biometrika 72:253–265 Fisher NI, Switzer P (1985) Chi-plots for assessing dependence. Biometrika 72:253–265
Zurück zum Zitat Fisher NI, Switzer P (2001) Graphical assessment of dependence: Is a picture worth 100 tests? Am Stat 55:233–239 Fisher NI, Switzer P (2001) Graphical assessment of dependence: Is a picture worth 100 tests? Am Stat 55:233–239
Zurück zum Zitat Frahm G, Junker M, Schmidt R (2005) Estimating the taildependence coefficient: properties and pitfalls. Insur Math Econ 37:80–100 Frahm G, Junker M, Schmidt R (2005) Estimating the taildependence coefficient: properties and pitfalls. Insur Math Econ 37:80–100
Zurück zum Zitat Ganguli P, Reddy MJ (2013) Probabilistic assessment of flood risks using trivariate copulas. Theor Appl Climatol 111:341–360 Ganguli P, Reddy MJ (2013) Probabilistic assessment of flood risks using trivariate copulas. Theor Appl Climatol 111:341–360
Zurück zum Zitat Gebregiorgis AS, Hossain F (2012) Hydrological risk assessment of old dams: case study on Wilson Dam of Tennessee River Basin. J Hydrol Eng 17:201–212 Gebregiorgis AS, Hossain F (2012) Hydrological risk assessment of old dams: case study on Wilson Dam of Tennessee River Basin. J Hydrol Eng 17:201–212
Zurück zum Zitat Goel NK, Seth SM, Chandra S (1998) Multivariate modeling of flood flows. J Hydraul Eng 124:146–155 Goel NK, Seth SM, Chandra S (1998) Multivariate modeling of flood flows. J Hydraul Eng 124:146–155
Zurück zum Zitat Graler B, van den Berg MJ, Vandenberghe S, Petroselli A, Grimaldi S, De Baets B, Verhoest NEC (2013) Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol Earth Syst Sc 17:1281–1296 Graler B, van den Berg MJ, Vandenberghe S, Petroselli A, Grimaldi S, De Baets B, Verhoest NEC (2013) Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol Earth Syst Sc 17:1281–1296
Zurück zum Zitat Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29:1155–1167 Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29:1155–1167
Zurück zum Zitat Joe H, Smith RL, Weissman I (1992) Bivariate threshold models for extremes. J R Stat Soc B 54:171–183 Joe H, Smith RL, Weissman I (1992) Bivariate threshold models for extremes. J R Stat Soc B 54:171–183
Zurück zum Zitat Kar KK, Yang SK, Lee JH, Khadim KF (2017) Regional frequency analysis for consecutive hour rainfall using L-moments approach in Jeju Island, Korea. Geoenviron Disasters 4(18):1–13 Kar KK, Yang SK, Lee JH, Khadim KF (2017) Regional frequency analysis for consecutive hour rainfall using L-moments approach in Jeju Island, Korea. Geoenviron Disasters 4(18):1–13
Zurück zum Zitat Karmakar S, Simonovic SP (2008) Bivariate flood frequency analysis: Part1. Determination of marginals by parametric and nonparametric techniques. J Flood Risk Manag 1:190–200 Karmakar S, Simonovic SP (2008) Bivariate flood frequency analysis: Part1. Determination of marginals by parametric and nonparametric techniques. J Flood Risk Manag 1:190–200
Zurück zum Zitat Karmakar S, Simonovic SP (2009) Bivariate flood frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. J Flood Risk Manag 2:32–44 Karmakar S, Simonovic SP (2009) Bivariate flood frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. J Flood Risk Manag 2:32–44
Zurück zum Zitat Kendall MG (1975) Rank correlation methods. Charless Griffin, London Kendall MG (1975) Rank correlation methods. Charless Griffin, London
Zurück zum Zitat Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303 Ljung GM, Box GEP (1978) On a measure of lack of fit in time series models. Biometrika 65:297–303
Zurück zum Zitat Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259 Mann HB (1945) Nonparametric tests against trend. Econometrica 13(3):245–259
Zurück zum Zitat Meylan P, Favre AC, Musy A (2012) Predictive hydrology: a frequency analysis approach. CRC Press, Boca Raton Meylan P, Favre AC, Musy A (2012) Predictive hydrology: a frequency analysis approach. CRC Press, Boca Raton
Zurück zum Zitat Mitkova VB, Halmova D (2014) Joint modeling of flood peak discharges, volume and duration: a case study of the Danube River in Bratislava. J Hydrol Hydromech 62:186–196 Mitkova VB, Halmova D (2014) Joint modeling of flood peak discharges, volume and duration: a case study of the Danube River in Bratislava. J Hydrol Hydromech 62:186–196
Zurück zum Zitat Nadarajah S, Shiau JT (2005) Analysis of extreme flood events for the Pachang River. Taiwan Water Resour Manag 19:363–374 Nadarajah S, Shiau JT (2005) Analysis of extreme flood events for the Pachang River. Taiwan Water Resour Manag 19:363–374
Zurück zum Zitat Nagy BK, Mohssen M, Hughey KFD (2017) Flood frequency analysis for a braided river catchment in New Zealand: comparing annual maximum and partial duration series with varying record lengths. J Hydrol 547:365–374 Nagy BK, Mohssen M, Hughey KFD (2017) Flood frequency analysis for a braided river catchment in New Zealand: comparing annual maximum and partial duration series with varying record lengths. J Hydrol 547:365–374
Zurück zum Zitat Nelms DL, Harlow GE (1997) Base-Flow characteristics of streams in the valley and ridge, the blue ridge and the piedmont physiographic provinces of Virginia. U.S. Geological Water Supply Paper 2457, pp 48 Nelms DL, Harlow GE (1997) Base-Flow characteristics of streams in the valley and ridge, the blue ridge and the piedmont physiographic provinces of Virginia. U.S. Geological Water Supply Paper 2457, pp 48
Zurück zum Zitat Pyrce R (2004) Hydrological low flow indices and their uses. Watershed Science Centre, Trent University. WSC Report No. 04-2004 Pyrce R (2004) Hydrological low flow indices and their uses. Watershed Science Centre, Trent University. WSC Report No. 04-2004
Zurück zum Zitat Rao AR, Hamed HK (2000) Flood frequency analysis. CRC Press, London Rao AR, Hamed HK (2000) Flood frequency analysis. CRC Press, London
Zurück zum Zitat Reddy MJ, Ganguli P (2012) Bivariate flood frequency analysis of upper godavari river flows using archimedean copulas. Water ResourManag 26:3995–4018 Reddy MJ, Ganguli P (2012) Bivariate flood frequency analysis of upper godavari river flows using archimedean copulas. Water ResourManag 26:3995–4018
Zurück zum Zitat Requena AI, Mediero L, Garrote L (2013) A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrol Earth Syst Sc 17:3023–3038 Requena AI, Mediero L, Garrote L (2013) A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrol Earth Syst Sc 17:3023–3038
Zurück zum Zitat Sandoval CE, Raynal-Villasenor J (2008) Trivariate generalized extreme value distribution in flood frequency analysis. Hydrolog Sci J 53:550–567 Sandoval CE, Raynal-Villasenor J (2008) Trivariate generalized extreme value distribution in flood frequency analysis. Hydrolog Sci J 53:550–567
Zurück zum Zitat Schmidt R, Stadtmüller U (2006) Nonparametric estimation of tail dependence. Scand J Stat 33:307–335 Schmidt R, Stadtmüller U (2006) Nonparametric estimation of tail dependence. Scand J Stat 33:307–335
Zurück zum Zitat Seckin N, Haktanir T, Yurtal R (2011) Flood frequency analysis of Turkey using L-moments method. Hydrol Process 25:3499–3505 Seckin N, Haktanir T, Yurtal R (2011) Flood frequency analysis of Turkey using L-moments method. Hydrol Process 25:3499–3505
Zurück zum Zitat Serinaldi F (2015) Dismissing return periods! Stoch Env Res Risk A 29:1179–1189 Serinaldi F (2015) Dismissing return periods! Stoch Env Res Risk A 29:1179–1189
Zurück zum Zitat Serinaldi F, Grimaldi S (2007) Fully nested 3-copula: procedure and application on hydrological data. J Hydrol Eng 12:420–430 Serinaldi F, Grimaldi S (2007) Fully nested 3-copula: procedure and application on hydrological data. J Hydrol Eng 12:420–430
Zurück zum Zitat Shafaei M, Fakheri-Fard A, Dinpashoh Y, Mirabbasi R, De Michele C (2017) Modeling flood event characteristics using D-vine structures. Theor Appl Climatol 130:713–724 Shafaei M, Fakheri-Fard A, Dinpashoh Y, Mirabbasi R, De Michele C (2017) Modeling flood event characteristics using D-vine structures. Theor Appl Climatol 130:713–724
Zurück zum Zitat Singh K, Singh VP (1991) Derivation of bivariate probability density-functions with exponential marginals. StochHydrolHydraul 5:55–68 Singh K, Singh VP (1991) Derivation of bivariate probability density-functions with exponential marginals. StochHydrolHydraul 5:55–68
Zurück zum Zitat Sraj M, Bezak N, Brilly M (2015) Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrol Process 29:225–238 Sraj M, Bezak N, Brilly M (2015) Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrol Process 29:225–238
Zurück zum Zitat Tadic L, Bonacci O, Dadic T (2016) Analysis of the Drava and Danube rivers floods in Osijek (Croatia) and possibility of their coincidence. Environ Earth Sci 75:1238 Tadic L, Bonacci O, Dadic T (2016) Analysis of the Drava and Danube rivers floods in Osijek (Croatia) and possibility of their coincidence. Environ Earth Sci 75:1238
Zurück zum Zitat Tosunoglu F (2018) Accurate estimation of T year extreme wind speeds by considering different model selection criterions and different parameter estimation methods. Energy 162:813–824 Tosunoglu F (2018) Accurate estimation of T year extreme wind speeds by considering different model selection criterions and different parameter estimation methods. Energy 162:813–824
Zurück zum Zitat Tosunoglu F, Ispirli MN, Gurbuz F, Sengul S (2017) Estimation of missing streamflow records in the euphrates basin using flow duration curves and regression models. Igdir Univ J Inst Sci Technol 7:85–94 Tosunoglu F, Ispirli MN, Gurbuz F, Sengul S (2017) Estimation of missing streamflow records in the euphrates basin using flow duration curves and regression models. Igdir Univ J Inst Sci Technol 7:85–94
Zurück zum Zitat Tosunoglu F, Singh VP (2018) Multivariate modeling of annual instantaneous maximum flows using copulas. J Hydrol Eng 23(3):04018003 Tosunoglu F, Singh VP (2018) Multivariate modeling of annual instantaneous maximum flows using copulas. J Hydrol Eng 23(3):04018003
Zurück zum Zitat Wang C, Chang NB, Yeh GT (2009) Copula-based flood frequency (COFF) analysis at the confluences of river systems. Hydrol Process 23:1471–1486 Wang C, Chang NB, Yeh GT (2009) Copula-based flood frequency (COFF) analysis at the confluences of river systems. Hydrol Process 23:1471–1486
Zurück zum Zitat Yue S (1999) Applying bivariate normal distribution to flood frequency analysis. Water Int 24:248–254 Yue S (1999) Applying bivariate normal distribution to flood frequency analysis. Water Int 24:248–254
Zurück zum Zitat Yue S (2000) The bivariate lognormal distribution to model a multivariate flood episode. Hydrol Process 14:2575–2588 Yue S (2000) The bivariate lognormal distribution to model a multivariate flood episode. Hydrol Process 14:2575–2588
Zurück zum Zitat Yue S (2001) A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol Process 15:1033–1045 Yue S (2001) A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol Process 15:1033–1045
Zurück zum Zitat Yue S, Rasmussen P (2002) Bivariate frequency analysis: discussion of some useful concepts in hydrological application. Hydrol Process 16:2881–2898 Yue S, Rasmussen P (2002) Bivariate frequency analysis: discussion of some useful concepts in hydrological application. Hydrol Process 16:2881–2898
Zurück zum Zitat Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11:150–164 Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11:150–164
Zurück zum Zitat Zhang L, Singh VP (2007) Trivariate flood frequency analysis using the Gumbel–Hougaard copula. J Hydrol Eng 12:431–439 Zhang L, Singh VP (2007) Trivariate flood frequency analysis using the Gumbel–Hougaard copula. J Hydrol Eng 12:431–439
Zurück zum Zitat Zhang ZY, Stadnyk TA, Burn DH (2019) Identification of a preferred statistical distribution for at-site flood frequency analysis in Canada. Can Water Resour J 45(1):43–58 Zhang ZY, Stadnyk TA, Burn DH (2019) Identification of a preferred statistical distribution for at-site flood frequency analysis in Canada. Can Water Resour J 45(1):43–58
Metadaten
Titel
Multivariate modeling of flood characteristics using Vine copulas
Publikationsdatum
01.10.2020
Erschienen in
Environmental Earth Sciences / Ausgabe 19/2020
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-020-09199-6

Weitere Artikel der Ausgabe 19/2020

Environmental Earth Sciences 19/2020 Zur Ausgabe