Skip to main content
Log in

Effect of Nitrogen Content on the Tensile and Stress Corrosion Cracking Behavior of AISI Type 316LN Stainless Steels

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This paper deals with the effect of nitrogen on the tensile and stress corrosion cracking (SCC) behavior of type 316LN stainless steel. Yield stress (YS) and ultimate tensile stress (UTS) increased while the ductility [% total elongation (% TE)] decreased with increasing nitrogen content. Evaluation by conventional assessment parameters, such as ratios of UTS, % TE and SCC susceptibility index, derived by SCC testing using the slow strain rate testing (SSRT) technique indicated an improvement in SCC resistance on increasing the nitrogen content. However, crack growth rates, calculated from ratios of fracture stress from the SSRT tests in liquid paraffin and boiling 45 % magnesium chloride in SSRT tests, and the constant load tests at loads corresponding to 20 % YS in boiling 45 % magnesium chloride conclusively established that the SCC resistance of type 316LN stainless steel decreased with increasing nitrogen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Speidel M O, in Proc First Int Conf High Nitrogen Steels “HNS 88”, Lille, (eds) Foct J, and Hendry A, The Institute of Metals, London, (1989), p 92.

  2. Dutta R S, De P K, and Gadiyar H S, Corros Sci 34 (1993) 51.

    Article  Google Scholar 

  3. Jargelius R, and Wallin T, in Proceedings of the Tenth Scandinavian Corrosion Congress, Stockholm (1986) 181.

  4. Parvathavarthini N, Dayal R K, and Gnanamoorthy J B, J Nucl Mater 208 (1994) 251.

    Article  Google Scholar 

  5. Briant C L, Mulford R A, and Hall E L, Corrosion 38 (1982) 468.

    Article  Google Scholar 

  6. Mozhi T A, Clark W A T, Nishimoto K, Johnson W B, and MacDonald D D, Corrosion 41 (1985) 555.

    Article  Google Scholar 

  7. Shaikh H, George G, Schneider F, Mummert K, and Khatak H S, Werkstoffe und Korrosion 51 (2000) 719.

    Article  Google Scholar 

  8. Mozhi T A, Clark W A T, and Wilde B E, Corros Sci 27 (1987) 257.

    Article  Google Scholar 

  9. Hanninen H E, Int Metals Rev 24 (1979) 85.

    Google Scholar 

  10. Loginow A W, and Bates J F, Corrosion 25 (1969) 15.

    Article  Google Scholar 

  11. Taillard R, and Foct J, in Proc First Int Conf High Nitrogen Steels “HNS 88”, Lille, (eds) Foct J, and Hendry A, The Institute of Metals, London, (1989), p 387.

  12. Karray R, Saraazin C, Desjardins D, and Darriet B, in Proceedings of the Conference on Modifications of Passive Film, Paris (1993) 330.

  13. Leinonen H, and Hanninen H, Mater Sci Forum 318320 (1999) 545.

    Article  Google Scholar 

  14. Tsai W T, Reynders B, Stratmann M, and Grabke H J, Corros Sci 34 (1993) 1647.

    Article  Google Scholar 

  15. ASTM G36-94, Standard Practice for Evaluating Stress-Corrosion-Cracking Resistance of Metals and Alloys in a Boiling Magnesium Chloride Solution (2006).

  16. Stein G, Hucklenbroich, and Feichtinger H, Mater Sci Forum 318320 (1999) 151.

    Article  Google Scholar 

  17. Norstrom L-A, Metal Sci 11 (1977) 208.

    Google Scholar 

  18. Degallaix S, Foct J, and Hendry A, Mater Sci Technol 2 (1986) 946.

    Article  Google Scholar 

  19. Liljas M, and Nilsson J-O, Mater Sci Forum 318320 (1999) 189.

    Google Scholar 

  20. Nystrom M, Lindstedt U, Karlson B, and Nilsson J O, Mater Sci Technol 13 (1997) 560.

    Article  Google Scholar 

  21. Pickering F B, in Proc First Int Conf High Nitrogen Steels “HNS 88”, Lille, (eds) Foct J, and Hendry A, The Institute of Metals, London, (1989), p 10.

  22. Nakamura T, Tsuchiyama T, and Takaki S, Mater Sci Forum 318320 (1999) 209.

    Article  Google Scholar 

  23. Illola R J, Hanninen H E, and Ullakko K M, ISIJ Int 36 (1996) 874.

    Article  Google Scholar 

  24. Hishida M, and Nakada H, Corrosion 33 (1977) 332.

    Article  Google Scholar 

  25. Khatak H S, Muraleedharan P, Gnanamoorthy J B, Rodriguez P, and Padmanabhan K A, J Nucl Mater 168 (1989) 157.

    Article  Google Scholar 

  26. Shaikh H, Khatak H S, Seshadri S K, Gnanamoorthy J B, and Rodriguez P, Metall Mater Trans A 26A (1995) 1859.

    Article  Google Scholar 

  27. Kim C D, and Wilde B E, ASTM STP 665, (1979) 97.

    Google Scholar 

  28. Maiya P S, Shack W J, and Kassner T F, Corrosion 46 (1990) 954.

    Article  Google Scholar 

  29. Shaikh H, Venkedesan S, Narayanan C, Khatak H S, and Gnanamoorthy J B, J Mater Eng Perform 1 (1993) 823.

    Article  Google Scholar 

  30. Desestret A, and Oltra R, Corros Sci 20 (1980) 799.

    Article  Google Scholar 

  31. Khatak H S, Muraleedharan P, Gnanamoorthy J B, Rodriguez P, and Padmanabhan K A, in Proceedings of the Sixth International Conference on Fracture, New Delhi, (1984) 153.

  32. Shehata M F, Schwartz S, Engelmann H J, and Uhlemann M, Mater Sci Technol 13 (1997) 1016.

    Article  Google Scholar 

  33. Hanninen H, Romu J, Ilola R, Tervo J, and Laitinen A, J Mater Process Technol 117 (2001) 424.

    Article  Google Scholar 

  34. Nakajima H, Yoshida K, and Shimamoto S, ISIJ Int 30 (1990) 567.

    Article  Google Scholar 

  35. Abdeljawad F F, MS Thesis, North Carolina State University, (2005).

  36. Parvathavarthini N, Mulki S, Dayal R K, Samajdar I, Mani K V, and Baldev Raj, Corros Sci 51 (2009) 2144.

    Google Scholar 

  37. Muraleedharan P, Khatak H S, Gnanamoorthy J B, and Rodriguez P, Metall Trans A 16A (1985) 285.

    Article  Google Scholar 

  38. Khatak H S, Gnanamoorthy J B, and Rodriguez P, Metall Mater Trans 27A (1996) 1313.

    Article  Google Scholar 

  39. Shaikh H, Khatak H S, and Gnanamoorthy J B, Werkstoffe und Korrosion 38 (1987) 183.

    Article  Google Scholar 

  40. Vinoy T V, Shaikh H, Khatak H S, Sivaibharasi N, and Gnanamoorthy J B, J Nucl Mater 238 (1996) 278.

    Article  Google Scholar 

  41. Nakayama T, and Takano M, Corrosion 37 (1981) 226.

    Article  Google Scholar 

  42. Mukai Y, Watanabe M, and Murata M, ASTM STP 645, (1978) 164.

    Google Scholar 

  43. Meletis E I, and Hockman R F, Corros Sci 24 (1984) 843.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Shaikh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poonguzhali, A., Anita, T., Sivaibharasi, N. et al. Effect of Nitrogen Content on the Tensile and Stress Corrosion Cracking Behavior of AISI Type 316LN Stainless Steels. Trans Indian Inst Met 67, 177–184 (2014). https://doi.org/10.1007/s12666-013-0330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-013-0330-2

Keywords

Navigation