Skip to main content
Log in

Theory and Practice of γ + α2 Ti Aluminide: A Review

  • Review Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Among the high temperature materials γ + α2 Ti aluminide is the most promising material, which has unique characteristics of low density coupled with high temperature properties. However, the low room temperature ductility of the alloy has limited its commercial application. Many studies have been carried out on this alloy to understand the phase transformation and role of alloying elements. Several processing methodologies have been attempted and advantages of various routes have been explored. However, poor ductility at room temperature is still a concern. In the present paper a thorough review of relevant studies has been carried out and viable route for industrial processing has been suggested. This paper includes theoretical concepts behind limited ductility of alloy at room temperature and its processing difficulty through the conventional methods. Modification in binary Ti aluminide alloy through alloying addition, selection of suitable processing route and heat treatment are noted as important areas which can provide a practical solution for this alloy to bring it to industrial processing and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Lipsitt H A, in Mater Res Soc Symp Proc 39 High Temp Ordered Intermetallic Alloys, (eds) Koch C C, Liu C T, and Stolloff N S (1985), p 351.

  2. Tetsui T, Intermetallics 10 (2002) 239.

    Google Scholar 

  3. Appel F, Paul J D H, Ochring M, Frobel U, and Lorenz U, Met Mater Trans A 34A (2003) 2149.

    Google Scholar 

  4. Kattener U R, Lin J C, and Chang Y A, Met Trans A 23A (1992) 2081.

    Google Scholar 

  5. Dimiduk D M, Mater Sci Eng A 263 (1999) 281.

    Google Scholar 

  6. Djanarthany S, Viala J, and Bouix J, Mater Chem Phys 72 (2001) 301.

    Google Scholar 

  7. Das G, Kestler H, Clemens H, and Bartolotta P A, JOM 56 (2004) 42.

    Google Scholar 

  8. Froes F H, Suryanarayana C, and Eliezer D, ISIJ Int 31 (1991) 1235

    Google Scholar 

  9. Matsuo M, ISIJ Int 31 (1991) 1212.

    Google Scholar 

  10. Froes F H, Suryanarayana C, and Eliezer D, J Mater Sci 27 (1992) 5113.

    Google Scholar 

  11. Huang S C, and Chesnutt J C, in Intermetallic Compounds, (vol 2), (eds) Westbrook J H, and Fleisher R L, Wiley, New York (1994), p 73.

  12. Austin C M, Kelly T J, McAllistor K G, and Chesnutt J C, in Structural Intermetallics, (eds) Nathal M V, Darolia R, Liu C T, Martin P L, Miracle D B, Wagner R, and Yamaguchi M, The Minerals, Metals and Mater Society, Warrendale, PA (1997), p 413.

  13. Venskutonis A, and Kibacher K, Euro Space Agency Bull, 10 (2000) 2.

    Google Scholar 

  14. Tetsui T, Mater Sci Eng A 582 (2002) 329.

    Google Scholar 

  15. Loria E A, Intermetallics 8 (2000) 1339.

    Google Scholar 

  16. Kim Y W, and Dimiduk D M, JOM. 43 (1991) 40.

    Google Scholar 

  17. Huang S C, and Hall E L, in Mater Res Soc Symp Proc 213 High Temp Ordered Intermetallic Alloys IV, (eds) Johnson L A, Pope D P, and Stiegler J O (1991), p 827.

  18. Semiatin S L, Lark K A, Barker D A, Seetharaman V, and Marquardt B, Met Trans 23A (1992) 295.

    Google Scholar 

  19. Yamaguchi M, Inui H, and Ito K, Acta Mater 48 (2000) 307.

    Google Scholar 

  20. Mutoh Y, Moriya T, Zhu S J, and Mizuhara Nagaoka Y, Third Pacific Rim Int Conference on Advanced Mater and Processing, Honolulu, Hawaii (1998).

  21. Yamaguchi M, Mater Sci Tech 8 (1992) 299.

    Google Scholar 

  22. Du H L, Aljarany A, Datta P K, and Burnell-Gray J S, Corr Sci 47 (2005) 1706.

    Google Scholar 

  23. Datta P K, and Burnell-Gray J S, J Appl Electrochem 30 1191, doi:10.1023/A:1004164521182.

  24. Du H L, Datta P K, Lewis D B, and Burnell-Gray J S, Corr Sci. 36 (1994) 631.

  25. Hu D, Jiang H, and Wu X, Intermetallics 17 (2009) 744.

    Google Scholar 

  26. Bondarev B, Anoshkin N, Molotkov A, Notkin A, and Elagin D, in Intermetallic Compounds-Structure and Properties, (ed) Izumi O, The Japan Inst of Metals, Sendai (1991), p 1009.

  27. Imayev R M, Imayev V M, and Salischev G, Scripta Met Mater 29 (1993) 713.

    Google Scholar 

  28. Imayev R M, Imayev V M, and Salischev G, Scripta Met Mater 29 (1993) 719.

    Google Scholar 

  29. Imayev V M, Salischev G A, Imayev R M, Shagiev M R, Gabdullin N K, and Kuznestov A V, in Min Met Mater Soc Conf Proc Structural Intermetallics, (eds) Nathal M V, Darolia R, Liu C T, Martin P L, Miracle D B, Wagnor R, and Yamaguchi M (1997), p 505.

  30. Salischev G, Imayev R M, Senkov O N, and Froes F H, JOM 52 (2000) 46.

    Google Scholar 

  31. Salischev G, Imayev R M, Senkov O N, Imayev V M, Gabdullin N K, Shagiev M R, Kuznestov A V, and Froes F H Mater Sci Eng A 286 (2000) 236.

    Google Scholar 

  32. Shagiev M R, Salischev G, Imayev R M, Imayev V M, and Kuznestov A V, Mater Sci Forum 447–448 (2004) 317.

    Google Scholar 

  33. Baczewska Karwan J, Dymkoski T, and Seetharaman S, Adv in PM Particulate Mater 4 (1996) 15.

    Google Scholar 

  34. Baczewska Karwan J, Dymkowski T, and Seetharaman S, in Proc Int Conf on Non Ferrous Metals and alloys 99, Archives of Metallurgy, No. 3 (2000).

  35. Sauthoff G, Intermetallics, VCH Verlagsgesellchaft mbH, Weinheim (1995).

    Google Scholar 

  36. Dogan B, Wagner R, and Beaven P A, Scripta Met 25 (1991) 773.

    Google Scholar 

  37. Dahms M, Seeger J, Smarsly W, and Wildhagen B, ISIJ Int 31 (1991) 1093.

    Google Scholar 

  38. Pant Bhanu, Agarwala V, Agarwala R C, and Sinha P P, Trans IIM 60 (2007) 407.

  39. Bhanu Pant, Synthesis and characterization of Ti aluminides for space applications, PhD Thesis, Indian Institute of Technology Roorkee (2005).

  40. Bhanu Sankar Rao K, Sadhana 28 (2003) 695.

  41. Bhanu Sankara Rao K, Lerch B A, and Noebe R D, HITEMP Review. NASA CP 10146 (1994) 53.1.

  42. Hansson T, Kamaraj M, Mutoh Y, and Pettersson B, ASTM STP 1367 (1999) 65.

    Google Scholar 

  43. Banerjee S, and Mukhopadhyay P, Phase Transformations: Examples from Ti and Zr alloys, Elsevier, New York (2007), p 442.

  44. Caogen Y, Hongjun L, Zhonghua J, Xinchao J, Yan L, and Haigang L, Acta Astronaut 63 (2008) 280.

    Google Scholar 

  45. Blosser M L, Development of MTPS for RLV, NASA Technical Memorandum 110296 (1996).

  46. Wu X, Intermetallics 14 (2006) 1114.

    Google Scholar 

  47. Zhao JC, and Westbrook J H, Ultrahigh-temp mater for jet engines and westbrook, MRS Bull (2003) 622, www.mrs.org/publications/bulletin.

  48. Pather R, Mitten W A, Holdway P, Ubhi H S, Wisbey A, and Bzooks J W, Intermetallics 11 (2003) 1015.

    Google Scholar 

  49. Perkins R A, Chiang K T, and Meier G H, Scr Met 21(1987) 1505.

    Google Scholar 

  50. Teng L, Nakatoni D, and Seetharaman S, Metall Mater Trans 38B (2007) 477.

    Google Scholar 

  51. Shih D S, and Scar G K, in Mater Res Soc Symp Proc High Temp Ordered Intermetallic Alloys IV, (vol 213) (1991), p 727.

    Google Scholar 

  52. London B, and Kelly T J, in Microstructure/Property Relationships in Ti Aluminides and Alloys, (eds) Kim Y W, and Boyer R R, TMS, Warrandale (1991), p 285.

  53. Kim Y W, and Froes F H, in High Temp Aluminides and Intermetallics, (eds) Whang S H, Liu C T, and Pope D P, TMS, Warrandale (1990), p 465.

  54. McQuay P and Larsen D, in Structural Intermetallics, (eds) Nathal M V, Darolia R, Liu C T Martin P L, Miracle D B, Wagner R, and Yamaguchi M, The Minerals, Metals and Mater Society, Warrendale, PA (1997), p 523.

  55. Kuang J P, Harding R A, and Campbell J, Mater Sci Eng A 329–331 (2002) 31.

    Google Scholar 

  56. Chraponski J, Szkliniarz W, Koscielna A, and Serek B, Mater Chem Phys 81(2003) 438.

    Google Scholar 

  57. Skrotzki W, Kegler K, Tamm R, and Oertel C G, Cryst Res Technol 40 (2005) 90.

    Google Scholar 

  58. Guther V, Chatterjee A, and Kettner H, Gamma Ti Aluminides 2003, TMS, Warrendale, PA (2003).

    Google Scholar 

  59. Springgate M E, Nikolas D G, Sturgis D H, and Yasrebi M, United States Patent No. 6,024,163 (2000).

  60. Dimcic B, Vilotizevic M, Bozic D, Rajnovic D, and Jovanovic M T, Mater Sci Forum 494 (2005) 211.

    Google Scholar 

  61. Mei B, Lin J, Miyamoto Y, and Iwasa M, SIJ Int 40 (2000) S77.

    Google Scholar 

  62. Zhao I, Beddo J, Morphy D, and Wallace W, Mater Sci Eng A 192/193 (1995) 957.

    Google Scholar 

  63. Kumaran S, Chantaiah B, Srinivasa Rao T, Mater Chem Phys 108 (2008) 97.

    Google Scholar 

  64. Bouodina M, and Guo Z X, Mater Sci Eng A 332 (2002) 210.

    Google Scholar 

  65. Oehring M, Appel F, Pfullmann Th, and Borrmann R, Appl Phys Lett 66 (1995) 941.

    Google Scholar 

  66. Suryanarayana C, Prog Mater Sci 46 (2001) 1.

    Google Scholar 

  67. Bertolino N, Monagheddu M, Tacca A, Giuliani P, Zanotti C, and Tamburini A U, Intermetallics 11 (2003) 41.

    Google Scholar 

  68. Ge Z, Chen K, Guo J, Zhou H, and Ferreira J M F, J Euro Ceram Soc 23 (2003) 567.

  69. Minay E J, McShane H B, and Rawlings R D, Intermetallics 12 (2004) 75.

  70. Yamaguchi M, Inui H, and Ito K, Acta Mater 48 (2000) 307.

    Google Scholar 

  71. Banerjee S, Mukhopadhyay P, Phase Transformations: Examples from Ti and Zr alloys, Elsevier, New York (2007), p 442.

  72. Dimiduk D M, and Vasudevan VK, in Gamma Titanium Aluminides, (eds) Kim Y W, Dimiduk D M, and Loretto M H, TMS, Warrendale, PA (1999), p 239.

  73. Zhang Z, Leonard K J, Dimiduk D M, Vasudevan V K, in Structural Intermetallics, (eds) Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, and Whittenberger J D, TMS, Warrendale, PA (2001), p 515.

  74. Rotherflue L L, and Lipsitt H A, in Titanium 95, (eds) Blenkinsop P A, Evans W J, Flower H M, IOM, London (1996), p 176.

  75. Prasad U, Xu Q, Chatuvedi M C, in Structural intermetallics 2001, (eds) Hemker K J, Dimiduk D M, Clemens H, Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, and Whittenberger J D, TMS, Warrendale PA (2001), p 615.

  76. Takeyama M, and Kikuchi M, Intermetallics 6 (1998) 573.

    Google Scholar 

  77. Hu D, Botten R R, Intermetallics 10 (2002) 701.

    Google Scholar 

  78. Denquin A, and Naka S, Acta mater 44 (1996) 343.

    Google Scholar 

  79. Kad B K, and Hazzledine P M, Phil Mag Lett 66 (1992) 133.

    Google Scholar 

  80. Inui H, Oh M H, Nakamura A, Yamguchi M, Phil Mag A 66 (1992) 539.

    Google Scholar 

  81. Denquin A, and Naka S, Acta mater 44 (1996) 353.

    Google Scholar 

  82. Shong D S, and Kim Y W, Scripta metal 23 (1989) 254.

    Google Scholar 

  83. Mcquay P A, Dimiduk M, and Semiatin S L, Scripta metal Mater 25 (1991) 1689.

    Google Scholar 

  84. Wang P, Wiswanathan G B, and Vasudevan V K, Metall Trans 23A (1992) 690.

    Google Scholar 

  85. Wang P, and Vasudevan V K, Scripta metall 27 (1992) 89.

    Google Scholar 

  86. Wang P, and Vasudevan V K, Mater Res Soc Symp Proc 288 (1993) 229.

    Google Scholar 

  87. Zhang X D, and Loretto M H, Phil Mag Lett 68 (1993) 289.

    Google Scholar 

  88. Jones S A, and Kaufman M J, Acta metal 41 (1993) 387.

    Google Scholar 

  89. Denquin A, Naka S, and Khan T, in Titanium 92, Science and Technology,(eds) Froes F H, and Caplan I L, TMS, Warrendale, PA (1992), p 1017.

    Google Scholar 

  90. Tsujimoto T, Hashimoto K, in MRS Symp Proc on High Temperature Ordered Intermetallic Alloys 111 (vol 133), MRS, Pittsburgh, PA (1989) 391.

    Google Scholar 

  91. Hu D, Huang A J, and Wu X, Intermetallics 15 (2007) 327.

    Google Scholar 

  92. Kim Y W, and Dimiduk D M, J Met 43 (1991) 40.

    Google Scholar 

  93. Jha S C, Forster J A, Pandey A K, and Delagi R G, ISIJ Int 31 (1991) 1267.

    Google Scholar 

  94. Peters J A, and Blank-Bewersdorff M, Mater Design 13 (1992) 83.

    Google Scholar 

  95. Yamaguchi M, Nishitani S R, and Shirai Y, in High Temperature Aluminides & Intermetallics, (eds) Whang S H, Liu C T, Pope D P, and Stiegler J O, The minerals, Metals & materials society, Warrendale (1990), p 63.

  96. Tsuzimoto T, and Hashimoto K, in High Temp Ordered Intermetallic Alloys III, (vol 133), (eds) Liu C T, Taub A I, Stollof N S, and Koch C C, Mater Research Society, Pittsburgh (1989), p 391.

  97. Shih D S, Huang S-C, Scarr G K, Jang H, and Chesnutt J C, in Microstructure/Property Relationships in Titanium Aluminides and Alloys, (eds) Kim Y-W, and Boyer R R, TMS, Warrendale, PA (1990), p 135.

  98. Kong F, Xu X, Chen Y, and Zhang D, Mater Design 33 (2012) 485.

    Google Scholar 

  99. Liu Q, and Nash P, Intermetallics 19 (2011) 1282.

    Google Scholar 

  100. Chen Y Y, Li B H, Kong F T, Trans Nonferrous Met Soc China 17 (2007) 58.

    Google Scholar 

  101. Hanamura T, Ikematsu Y, Morikawa H, Tanino M, and Takamura J, in Proc Int Symp on Intermetallic Compounds, (ed) Isumi O, Sendai, Japan (1991), p 179.

    Google Scholar 

  102. Ramaseshan R, Synthesis and characterization of γ-TiAl/Ti 2 AlC intermetallic composites made by reactive processing of electroless Coated Ti Powders, PhD Thesis, Indian Institute of Technology Madras, Chennai, India (1998).

  103. Kawabata T, Tamura T, and Izumi O, in High Temp ordered Intermetallic Alloys III, (eds) Liu C T, Taub A I, Stollof N S, and Koch C C, Mater Research Society, Pittsburgh (1989), p 329.

  104. Morinaga M, Saito J, Yukawa N, and Adachi H, Acta Met 38 (1990) 25.

    Google Scholar 

  105. Song A, Yang R, Li D, Hu Z Q, Guo Z X, Intermetallics 8 (2000) 563.

    Google Scholar 

  106. Hao Y L, Yang R, Cui Y Y, and Li D, Intermetallics 8 (2000) 633.

    Google Scholar 

  107. Perdrix F, Trichet M F, Bonnentien J L, Cornet M, and Bigot J, Intermetallics 9 (2001) 807.

    Google Scholar 

  108. Tian W H, and Nemoto M, Intermetallics 5 (1997) 237.

    Google Scholar 

  109. Li Z X, Cao C C, Intermetallics 13 (2005) 251.

    Google Scholar 

  110. Hu D, Intermetallics 10 (2002) 851.

    Google Scholar 

  111. Naka S, Thomas M, Sanchez C, Khan T, in Structural Intermetallics, (eds) Nathal M V, Darolia R, Liu C T, Martin P L, Miracle D B, Wagner R, and Leyens C, The Minerals, Metals and Materials Society, TMS, Warrendale, PA (1997), p 313.

  112. Kim Y-W, and Dimiduk D M, in Structural Intermetallics, (eds) Nathal M V, Darolia R, Liu C T, Martin P L, Miracle D B, Wagner R, and Leyens C, The Minerals, Metals and Materials Society, TMS, Warrendale, PA (1997), p 531.

  113. Shemet V, Tyagi A K, Singheiser L, Breuer K U, and Quadakkers W J, in Proc of Int Symp on Mater Ageing and Life Management (ISOMALM2000), (eds) Baldev R, Bhanu Sankara Rao, Jayakumar T, and Dayal R K, Kalpakkam, India (2000), p 809.

  114. Taniguchi S, and Shibata T, Intermetallics 4 (1996) 885.

    Google Scholar 

  115. Hanamura T, Uemori R, and Tanino M, J Mater Res, 3 (1988) 656.

    Google Scholar 

  116. Kawabata T, Tamura T, Izumi O, Metall Trans A 24 (1993) 141.

    Google Scholar 

  117. Djanarthany S, Servant C, and Penelle R, Mater Sci Eng A 152 (1992) 48.

    Google Scholar 

  118. Huang S C, and Hall E L, Metall Trans A 22 (1991) 2619.

    Google Scholar 

  119. Beddoes J, Wallace W, and Zhao L, Int Mater Rev 40 (1995) 197.

    Google Scholar 

  120. Martin P L, Mendiratta M G, and Lipsitt H A, Metall Trans A 14 (1983) 2170.

    Google Scholar 

  121. Martin P L, and Lipsitt H A, in Proceedings of the International Conference on Creep and Fracture of Engineering Materials and Structures, (vol 4), (eds) Wilshire B, and Evans R W, Institute of Metals, London (1990), p 255.

  122. Beddoes J, Zhao L, Au P, and Wallace W, Mater Sci Eng A, 192/193 (1995) 324.

  123. Kim Y W, JOM 41 (1989) 24.

    Google Scholar 

  124. Li Z X, and Cao C C, Intermetallics 13 (2005) 251.

    Google Scholar 

  125. Hecht U, Witusiewicz V, Drevermann A, and Zollinger J, Intermetallics 16 (2008) 969.

    Google Scholar 

  126. Cheng T T, Intermetallics 8 (2000) 29.

    Google Scholar 

  127. Hu D, Yang C, Huang A, Dixon A, and Hecht U, Intermetallics 22 (2012) 68.

    Google Scholar 

  128. Zhang W J, and Deevi S C, Mater Sci Eng A 337 (2002) 17.

    Google Scholar 

  129. Huang S-C, and Shih D S, in Microstructure/Property Relationships in Titanium Aluminides and Alloys, (eds) Kim Y-W, Boyer R R, TMS, Warrendale, PA (1990), p 105.

  130. Austin C, in Gamma Titanium Aluminides, (eds) Kim Y W, Wagner R, Yamaguchi M, TMS, Warrendale, PA (1995), p 21.

  131. Kim Y W, Acta Metall Mater 40 (1992) 1121.

    Google Scholar 

  132. Wagner R, and Appel F, Mater Sci Eng R 22 (1998) 187.

    Google Scholar 

  133. Dahms M, Pfullmann T, Seeger J, and Wildhanger B, in Microstructure/property Relationships in Titanium Aluminides & Alloys, (eds) Kim Y W, Boyer R R, The minerals, metals & materials society, Warrendale, PA (1991), p 337.

  134. Kim Y W, Mater Sci Eng A 192/193 (1995) 519.

    Google Scholar 

  135. You M H, and Fu C E, ISIJ int 31 (1991) 1049.

    Google Scholar 

  136. Kumpfert J, Kim Y W, Dimiduk D M, Mater Sci Eng A 192/193 (1995) 465.

    Google Scholar 

  137. Appel F, Paul J D H, Ochring M, Frobel U, and Lorenz U, Met Mater Trans A 34A (2003) 2149.

    Google Scholar 

  138. Appel F, Oehring V, and Wagner V, Intermetallic 8 (2000) 1283.

    Google Scholar 

  139. Heshmati-Manesh S, Nili Ahmadabad M, Ghasemiarmaki H, and Jafarian H R, J Alloys Comp 436 (2007) 200.

    Google Scholar 

  140. Takahashi T, Nagai H, and Oikawa H, Mater Sci Eng A 128A (1990) 195.

    Google Scholar 

  141. Seetharaman V, and Semiatin S L, Met Mater Trans A 29A (1998) 1991.

    Google Scholar 

  142. Imayev R M, Imayev V M, and Salischev G, Scripta Met Mater 29 (1993) 713.

    Google Scholar 

  143. Denquin A, PhD Thesis, University of Orsay, France (1994).

  144. Wang G X, and Dahms M, Scripta Met Mater 26 (1992) 717.

    Google Scholar 

  145. Hamada S, Hamada H, Suzuki H, and Nozue A J, J Mater Sci 37 (2002) 1107.

    Google Scholar 

  146. Chan K S, JOM 44 (1992) 30.

    Google Scholar 

  147. Chan K S, Metall Trans A 23 (1992) 183.

    Google Scholar 

  148. Chan K, Kim Y W, Metall Trans A 24 (1993) 113.

    Google Scholar 

  149. Enoki M, Kishi T, Mater Sci Eng A 192/193 (1995) 420.

    Google Scholar 

  150. Huang S C, Met Trans A 23A (1992) 375.

    Google Scholar 

  151. Schwenker S, and Kim Y-W, in Gamma Titanium Aluminides, (eds) Kim Y W, Wagner R, and Yamaguchi M, TMS, Warrendale, PA (1995), p 985.

    Google Scholar 

  152. Morris M A, Li Y G, and Leboeuf M, Scripta Metall Mater 31 (1994) 499.

    Google Scholar 

  153. Mine Y, Takashima K, and Bowen P, Mater Sci Eng A 532 (2012) 13.

    Google Scholar 

  154. Yamaguchi M, ISIJ Int 31 (1991) 1127.

    Google Scholar 

  155. Vasudevan V K, Stucke M A, Court S A, and Fraser H L, Phil Mag Lett 59 (1989) 299.

    Google Scholar 

  156. Huang S C, and Shih Donald S, in Micro–Property Relationships in Ti Aluminides and Alloys, (eds) Kim Y W, and Boyer Rodney R, TMS, Warrandale (1991), p 105.

    Google Scholar 

  157. Lin J P, Xu X J, Wang Y L, He S F, Zhang Y, Song X P, and Chen G L, Intermetallics 15 (2007) 668.

    Google Scholar 

  158. Si J-Y, Han P-B, and Zhang J, J Iron Steel Res Int 17 (2010) 67.

  159. Rong T S, Joaes I P, and Smallman R E, Acta Mater 46 (1998) 4507.

    Google Scholar 

  160. Huang S C, Scripta Metall 22 (1988) 1885.

    Google Scholar 

  161. Lipsitt H A, Schectman D, and Schafrik R E, Metall Trans A 6A (1975) 1991

  162. Chaudhari G P, and Viola L A, Intermetallics 18 (2010) 472.

    Google Scholar 

  163. Usta M, Wolfe H, Duquette D J, Stoloff N S, and Wright R N, Mater Sci Eng A 359 (2003) 168.

    Google Scholar 

  164. Suryanarayana C, Froes F H, and Riowe R G, Int Mater Rev 9 (1990) 948.

    Google Scholar 

  165. Shechtman D, Blackburn M J, and Lipsitt H A, Met Trans 5 (1974) 1373.

    Google Scholar 

  166. Koch C C, Int Mater Rev 33 (1988) 201.

    Google Scholar 

  167. Vujic D, Li Z, and Wang S H, Met Trans A 19A (1988) 2445.

    Google Scholar 

  168. Mckamey C G, Whang S H, and Liu C T, Scripta Met Mater 32 (1995) 383.

    Google Scholar 

  169. Inui H, Oh M H, Nakamura A, and Yamguchi M, Acta Met 40 (1992) 3095.

    Google Scholar 

  170. Yasuda H Y, Nakano T, Nakazawa J, and Umakoshi Y, ISIJ Int 37 (1997) 1210.

    Google Scholar 

  171. Zhao W, and David E L, in Symposium on Influences of Interface and Dislocation Behavior on Microstructure Evolution. (2000). http://www.mrs.org/members/proceedings/fall2000/y/Y10_4.pdf.

  172. Wegmann G, and Maruyama K, Phil Mag A 80 (2000) 2283.

    Google Scholar 

  173. Whittenberger J D, in Solid State Powder Processing, (eds) Clauer A H, and Barbadillo J J, The Minerals, Metals and Mater Society, Warrenda (1990), p 137.

  174. Pillai Suresh C, Kelly John M, McCormack Declan E, O’Brien P and Raghavendra R, J Mater Chem 13 (2003) 2586.

  175. Srinivasan S, Desch P B, and Schwartz R B, Scripta Met Mater 25 (1991) 2513.

    Google Scholar 

  176. Christman T, and Jain M, Scripta Met Mater 25 (1991) 767.

    Google Scholar 

  177. Paransky E, Gutmanas E Y, Gotman I, Koczak M, Metall Mater Trans A 27 (1996) 2130.

    Google Scholar 

  178. Munir Z A, and Anselmi Tamburini U, Mater Sci Rep 3 (1989) 277.

    Google Scholar 

  179. German R M, Adv P M 2(1990) 115.

    Google Scholar 

  180. Yi H C, and Moore J J, J Mater Sci 25 (1990) 1159.

    Google Scholar 

  181. Wen C E, Yasue K, and Yamada Y, J Mater Sci 36 (2001) 1741.

    Google Scholar 

  182. German R M, Bose A, and Stolloff N S, in MRS Proc High Temp Ordered Intermetallic Alloys III, (vol 133), (eds) Liu C T, Taub A I, Stoloff N S, and Koch C C, MRS, Pittsburgh (1989), p 403.

  183. Westwood A R C, Met Trans A 19A (1988) 749.

    Google Scholar 

  184. Nishimura C, and Liu C T, Acta Met et Mater 41 (1993) 113.

    Google Scholar 

  185. Guo J T, and Cui C Y, Key Eng Mater 217 (2002) 117.

    Google Scholar 

  186. Gedevanishvili S, and Deevi S C, Mater Sci Eng A 325 (2002) 163.

    Google Scholar 

  187. Savitskii A P, and Brutsev N N, Soviet P M Metal Ceram 20 (1981) 621.

    Google Scholar 

  188. Hahn Y D, and Lee Y T, Adv P M Particulate Mater 9 (1992) 309.

    Google Scholar 

  189. Wang Q, Sun Z, Hashimoto H, Tada S, Park Y-H, Ko S-H and Abe T, Mater Trans JIM 41 (2000) 551.

  190. Martin P L, and Hardwick D A, in Intermetallic Compounds, (vol 1), (eds) Westbrook J H, and Fleisher R L, Wiley, New York (1994), p 637.

  191. German R M, Liquid Phase Sintering, Plenum Press, NY (1985).

    Google Scholar 

  192. Perusko D, Petrovic S, Stojanovic M, Mitric M, Cizmovic M, Panjan M, Milosavlijevic M, Nucl Instrum Methods Phys Res B 282 (2012) 4.

    Google Scholar 

  193. Lee T K, Mosunov E I, and Hwang S K, Mater Sci Eng A 239–240 (1997) 540

    Google Scholar 

  194. Adeli M, Seyedein S H, Aboutalebi M R, Kobashi M, and Kanetake N, J Alloys Comp 497 (2010) 100.

    Google Scholar 

  195. Liu J P, Su Y Q, Luo L S, Chen H, Xu Y J, Guo J J, Fu H Z, Trans Nonferrous Met Soc China 22 (2012) 72.

    Google Scholar 

  196. Sun Y B, Zhao Y Q, Zhang D, Liu C Y, Diao H Y and Ma C L, Trans Nonferrous Met Soc China 21 (2011) 1722.

    Google Scholar 

  197. Cui X, Fan G, Geng L, Wang Y, Zhang H, and Peng H X, Scripta Mater 66 (2012) 276.

    Google Scholar 

  198. Chaudhri G P, and Acoff V L, Intermetallics 18 (2010) 472.

    Google Scholar 

  199. Zhang J, Intermetallics 18 (2010) 2292.

    Google Scholar 

  200. Liu G H, Li X Z, Su Y Q, Chen R R, Guo J J, and Fu H Z, Trans Nonferrous Met Soc China 22 (2012) 1342.

    Google Scholar 

  201. Austin C M, and Kelly T J, in Proc Int Symp on Structural Intermetallics, (eds) Darolia R, Lewandowski J J, Liu C T, Martin P L, Miracle D B, and Nachal M V, TMS, Warrandale, PA (1993), p 143.

  202. Huang S C, and Siemers P A, Met Trans A 20 (1989) 1899.

    Google Scholar 

  203. Semiatin S L, and Mcquay P A, Met Trans A 23 (1992) 149.

    Google Scholar 

  204. Tetsui T, in Structural Intermetallics, (eds) Nathal M V, Darolia R, Martin P L, Miracle D B, Wagner R, and Yamaguchi M, The Minerals, Metals and Mater Society, Warrendale, PA (1997), p 489.

  205. Fan J, Li X, Su Y, Guo J, and Fu H, Mater Design 34 (2012) 552.

    Google Scholar 

  206. Wang H, Zhu D, Zou C, and Wei Z, Mater Design 34 (2012) 488.

    Google Scholar 

  207. Nie G, Ding H, Chen R, Guo J, and Fu H, Mater Design 39 (2012) 350.

    Google Scholar 

  208. Harding R A, Wickins M, Wang H, Djambazov G, and Pericleous K A, Intermetallics 19 (2011) 805.

    Google Scholar 

  209. Aguilar J, Schievenbusch A, Kattlitx O, Intermetallics 19 (2011) 757

    Google Scholar 

  210. Cantor B, in Proc 22nd Risoe Int Symp Mat Sci: Science of Metastable and NanocrystallineAlloys, (eds) Dinesen A R, Eldrup M, Juul Jensen D, and Linderoth S, Risoe National Laboratory, Denmark (2001).

  211. Kim J K, Kin T K, Lee T K, Hwang S K, Nam S W, and Kim N J, Gamma Ti Aluminides The Minerals, Metals and Material Society, Warrendale, PA (1999), p 231.

  212. Fang W B, Li X W, Sun H F, and Ding Y F, Trans Nonferrous Met Soc China 21 (2011) s333.

    Google Scholar 

  213. Yu H B, Zhang D L, Chen Y Y, and Gabbitas B, J Alloys Comp 474 (2009) 105.

    Google Scholar 

  214. Ibrahim I A, Mohammed F A, and Lavernia E J, J Mater Sci, 26 (1991) 1137.

    Google Scholar 

  215. Chen Y Y, Yu H B, Zhang D L, and Chai L H, Mater Sci Eng A 525 (2009) 166.

    Google Scholar 

  216. Peter D, Viswanathan G B, Wagner M F X, and Eggeler G, Mater Sci Eng A 510–511 (2009) 359.

    Google Scholar 

  217. Fuchs G E, in Titanium 92, Science and Technology II, (eds) Froes F H, Chaplan I L, TMS, Warrendale, PA (1993), p 1275.

    Google Scholar 

  218. Rawers J C, and Wrzesinky W R, J Mater Sci 27 (1992) 2877.

    Google Scholar 

  219. Yi H C, and Moore J J, Scr Met 22 (1988) 1889.

    Google Scholar 

  220. Vaucher S, Stir M, Ishizaki K, Civera J M C, and Nicula R, Thermochmi Acta 522 (1–2) (2011) 151.

    Google Scholar 

  221. Naidich Y V, Lavrinenko I A, and Evdokmov V A, Sov Powder Met Metal Ceram 13 (1974) 26.

    Google Scholar 

  222. Semiatin S L, Vollmer D C, El-Soudani S, and Su C, Scripta Mater 53 (1990) 1409.

    Google Scholar 

  223. Semiatin S L, Lark K A, Barker D A, Seetharaman V, and Marquardt B, Met Trans A 23 (1992) 295.

    Google Scholar 

  224. Imayev R M, Imayev V M, and Salishchev G A, J Mater Sci 27 (1992) 4465.

    Google Scholar 

  225. Imayev R M, Kaibyshev O A, and Salishchev G A, Acta Met 40 (1992) 581.

    Google Scholar 

  226. Imayev R M, Gabdullin N K, Salishchev G A, Senkov O N, Imayev V M, and Froes F H, Acta Mater 47 (1999) 1809.

    Google Scholar 

  227. Nobuki M, Hashimoto K, Tsujimoto T, Asai Y, J Jpn Inst Met 50 (1986) 840.

    Google Scholar 

  228. Nobuki M, Tsujimoto T, Iron Steel Inst Jpn Int 31 (1991) 931.

    Google Scholar 

  229. Pilone D, Felli F, Intermetallics 26 (2012) 36.

    Google Scholar 

  230. Rao K P, Prasad Y V R K, and Suresh K, Mater Design 32 (2012) 4874.

    Google Scholar 

  231. Gupta R K, Pant B, Kumar V, Agarwala V, and Sinha P P, Mater Sci Engg A 559 (2013) 49–67.

    Google Scholar 

  232. Gupta R K, Narayana Murty S V S, Pant B, Agarwala V, and Sinha P P, Mater Sci Engg A 551 (2012) 169–186.

  233. Si J Y, Han P B, and Zhang J, J Iron Steel Res Int 17 (2010) 67.

    Google Scholar 

  234. Singh J P, Tuval E, Weiss I, and Srinivasan R, in γ Titanium Aluminides, (eds) Kim Y W, Wagner R, and Yamaguchi M, TMS, Warrendale, PA (1995), p 547.

  235. Fujitsunah N, Ohyama I, Miyamoto O, and Ashida Y, ISIJ Int 31 (1991) 1147.

    Google Scholar 

  236. Semiatin S L, Seetharaman V, Metall Mater Trans A 26A (1995) 371.

    Google Scholar 

  237. Tetjukhin V V, Levin I V, Kozlov A N, and Poljanskij S N, US Patent No. 2179899 April (2002).

  238. Wang L, Liu Y, Zhang W, Wang H, and Li Q, Intermetallics 19 (2011) 68.

    Google Scholar 

  239. Kong F, Chen Y, and Yang F, Intermetallics 19 (2011) 212.

    Google Scholar 

  240. Wang L, Liu Y, Zhang W, Wang H, Li Q, Intermetallics 19 (2011) 68.

    Google Scholar 

  241. Koscielna A, Szkliniarz W, Mater Charact 60 (2009) 1158.

    Google Scholar 

  242. Wang J N, and Xie K, Intermetallics 8 (2000) 545.

  243. Kim Y W, Rosenberger A, and Dimiduk D M, Intermetallics 17 (2009) 1017.

    Google Scholar 

  244. Kong F T, Chen Y Y, Wang W, Liu Z G, and Xiao S L,Trans Non ferrous Met Soc China 19 (2009) 1126.

    Google Scholar 

  245. Seetharaman V, and Semiatin S L, MaterSci Eng A 299 (2001) 195.

    Google Scholar 

  246. Beschliesser M, Chatterjee A, Lorich A, Knabl W, Kestler H, Dehm G, and Clemens H, Mater Sci Eng A 329-331 (2002) 124.

    Google Scholar 

  247. Imayev V, Imayev R, and Kuznetsov A, Scripta Mater 49 (2003) 1047.

    Google Scholar 

  248. Clemens H, Bartels A, Bystrzanowski S, Chladil H, Leitner H, Dehm G, Gerling R, and Schimansky F P, Intermetallics 14 (2006) 1380.

    Google Scholar 

  249. Perez Bravo M, Madariaga I, Estolaza K, and Tello M, Scripta Mater 53 (2005) 1141.

    Google Scholar 

  250. Wang J N, Yang J, Wang Y, Scripta Mater 52 (2005) 329.

    Google Scholar 

  251. Zhang W J, Francesconi L, and Evangelista E, Mater Lett 27 (1996) 135.

    Google Scholar 

  252. Zhao L, Au P, Beddoes J C, and Wallace W, US patent US5653828 (1995).

  253. Kikuchi M, Nakamura H, and Yamabe Y, Japanese patent JP6116691 (1994).

  254. Wang J N, and Xie K, Intermetallics 8 (2000) 545.

    Google Scholar 

  255. Wu X, and Hu D, Scripta Mater 52 (2005) 731.

    Google Scholar 

  256. Clemens H, Bertel A, Bystrzanowski S, Chladil H, Leitner H, Dehm G, Gerling R, Schimansky FP, Intermetallics 14 (2006) 1380.

    Google Scholar 

  257. Kumagai T, Abe E, Takeyama M, and Nakamura M, Scripta mater 36 (1997) 523.

    Google Scholar 

  258. Dimiduk D M, and Vasudevan V K, in Gamma Titanium Aluminides, (eds) Kim Y W, Dimiduk D M, and Loretto M H, TMS, Warrendale, PA (1999), p 239.

  259. Prasad U, and Chaturvedi M C, Metall Trans 34A (2003) 2053.

    Google Scholar 

  260. Herzig C, Prezeorski T, Friesel M, Hisker F, and Divinski S, Intermetallics 9 (2001) 461.

    Google Scholar 

  261. Mishin Y, and Herzig C, Acta Mater 48 (2000) 589.

  262. Hu D, Huang A J, and Wu X, Intermetallics 13 (2005) 211.

  263. Dey S R, Hazotte A, Bouzty E, and Naka S, Acta mater 53 (2005) 3783.

    Google Scholar 

  264. Sujata M, Sastry D H, and Ramachandra C, Intermetallics 12 (2004) 691.

    Google Scholar 

  265. Novoselova T, Malinov S, Sha W, Intermetallics 11 (2003) 491.

    Google Scholar 

  266. Zhao W, Pei Y, Zhang D, Ma Y, Gong S, and Xu H, Intermetallics 19 (2011) 429.

    Google Scholar 

  267. Barbi N, Rougier L, Diologent F, and Mortensen A, Intermetallics 18 (2010) 2145.

    Google Scholar 

  268. Zan X, He Y H, Wang Y, Xia Y M, Trans Nonferrous Met Soc China 21 (2011) 45.

    Google Scholar 

  269. Gosslar D, Gunther R, Hecht U, Hartig C, and Bormann R, Acta Mater 58 (2010) 6744.

    Google Scholar 

  270. Qiu C, Liu Y, Zhang W, Liu B, and Liang X, Intermetallics 27 (2012) 46.

    Google Scholar 

  271. Imayev V, Oleneva T, Imayev R, Christ H J, and Fecht H J, Intermetallics 26 (2012) 91.

    Google Scholar 

  272. Li Y J, Hu Q M, Xu D S, and Yang R, Intermetallics 19 (2011) 793.

    Google Scholar 

  273. Ren T, Shan D, Chen Y, and Lu Y, Mater Design 31 (2010) 3457.

    Google Scholar 

  274. Chen C L, Lu W, Sun D, He L L, and Ye H Q, Mater Charact 61 (2010) 1029.

    Google Scholar 

  275. Nakagawa Y G, Yokoshima S, and Mastuda K, Mater Sci Eng A 153 (1992) 722.

    Google Scholar 

  276. Chen G L, Xu X J, Teng Z K, Wang Y L, and Lin J P, Intermetallics 15 (2007) 625.

    Google Scholar 

  277. Biamino S, Penna A, Ackelid U, Sabbadini S, TassaO, Fino P, Pavese M, Gennaro P, and Badini C, Intermetallics 19 (2011) 776.

  278. Chen B, Ma Y, Gao M, and Liu K, J Mater Sci Technol 26 (2010) 900.

    Google Scholar 

  279. Guther V, Otto A, Kestler H, and Clemens H, in Gamma Titanium Aluminides 1999, (eds) Kim Y W, Dimiduk D M, and Loretto M H, TMS, Warrendale, PA (1999), p 225.

  280. Huang L, Liaw P K, Liu C T, Liu Y, and Huang J S, Trans Nonferrous Met Soc China 21 (2011) 2192.

    Google Scholar 

  281. Kim Y W, JOM 46 (1995) 39.

  282. Wang G, Xu L, Wang Y, Zheng Z, Cui Y, and Yang R, J Mater Sci Technol 27 (2011) 893.

    Google Scholar 

  283. Liu B, Liu Y, Li Y P, Zhang W, and Chiba A, Intermetallics 19 (2011) 1184.

    Google Scholar 

  284. Niu H Z, Kong F T, Xiao S L, Chen Y Y, and Yang F, Intermetallics 21 (2012) 97.

    Google Scholar 

  285. Loretto M H, Wu Z, Chu M Q, Saage H, Hu D, and Attallah M M, Intermetallics 23 (2012) 1.

    Google Scholar 

  286. Zhang W, Liu Y, Liu B, Li H Z, and Tang B, Trans Nonferrous Met Soc China 20 (2010) 547.

    Google Scholar 

  287. Liu B, Liu Y, Zhang W, and Huang J S, Intermetallics 19 (2011) 154.

    Google Scholar 

  288. Gupta R K, Pant Bhanu, Agarwala V, Agarwala R C, and Sinha P P, J Mater Sci Tech 26 (2010) 693.

  289. Li H Z, Zeng M, Liang X P, Li Z, and Liu Y, Trans Nonferrous Met Soc China 22 (2012) 754.

    Google Scholar 

  290. Zhang W, Liu Y, Wang L, and Liu B, Trans Nonferrous Met Soc China 22 (2012) 901.

    Google Scholar 

  291. Wang G, Xu L, Tian Y, Zheng Z, Cui Y, and Yang R, Mater Sci Eng A 528 (2011) 6754.

    Google Scholar 

  292. Rao K P, and Prasad Y V R K, Mater Sci Eng A 527 (2010) 6589.

    Google Scholar 

  293. Chen Y, Yang F, Hong F, and Xiao S, J Rare Earths 29 (2011) 114.

  294. Ha T K, and Jung J Y, Mater Sci Eng A 449–451 (2007) 139.

    Google Scholar 

  295. Si J, Gao F, Han P, and Zhang J, Intermetallics 19 (2011) 169.

    Google Scholar 

  296. Zhang W, Liu Y, Li H Z, Li Z, Wang H, and Liu B, J Mater Process Technol 209 (2009) 5363.

    Google Scholar 

Download references

Acknowledgments

Authors express thanks to GM, MMA, DD, MME for extending required support and technical guidance. Authors are thankful to Director, VSSC for permitting to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, R.K., Pant, B. & Sinha, P.P. Theory and Practice of γ + α2 Ti Aluminide: A Review. Trans Indian Inst Met 67, 143–165 (2014). https://doi.org/10.1007/s12666-013-0334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-013-0334-y

Keywords

Navigation