Skip to main content
Log in

Simulation of Crystal Sedimentation and Viscoplastic Behavior of Sedimented Equiaxed Mushy Zones

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

During solidification of castings, equiaxed crystals that is formed sink downwards, sediment and form a packed bed. The behavior of separated moving crystals can be described by a submerged object approach, whereas the viscoplastic behavior of a semi-solid slurry follows a volume-averaged viscoplastic constitutive equation. In this work, a two-phase Eulerian–Eulerian volume-averaging approach is used to combine both flow regimes. The transition happens at a certain solid volume fraction, the so-called coherency limit. Starting with a uniform distribution of crystals at rest, sedimentation and packing of crystals are described. In addition, the material density of the crystal is assumed to increase on cooling and thus the domain shrinks which is also accounted for in this report. It is demonstrated how sensitive the model is, on the considered crystal diameters and on the assumed value for the coherency limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

α, β:

Rheological function taken from [9]

c p, , c p,s :

Specific heat (J/kg/K)

C ε :

Settling ratio (–)

d :

Average crystal diameter (m)

g , g s :

Volume fraction (–)

\( g_s^{\text{pack}} \) :

Packing limit for hard spheres (–)

\( g_s^{\text{cohe}} \) :

Coherency limit (–)

h , h s :

Volume averaged enthalpy (J/kg)

H*:

Volume heat transfer coefficient (W/m3/K)

H ℓs :

Enthalpy exchange (J/m3/s)

I :

Identity tensor (–)

k , k s :

Heat conductivity (J/m2/K)

K :

Permeability (m2)

K v :

Viscoplastic consistency (kg sm−2/m)

K ℓs :

Drag coefficient (kg/m3/s)

m :

Strain rate sensitivity coefficient (–)

M ℓs :

Mass transfer (kg/m3/s)

p , p s :

Pressure (N/m2)

T , T s :

Volume average temperature (K)

v , v s :

Flow velocity (m/s)

\({\dot{ \varvec{ \varepsilon }}_\ell },\;{\dot{ \varvec{ \varepsilon }}_s} \) :

Strain rate tensor (–)

\( \dot \varepsilon_{eq}^s \) :

Equivalent strain rate (–)

μ , μ s :

Viscosity (kg/m/s)

ρ , ρ s :

Density (kg/m3)

σ , σ s :

Stress tensor (N/m2)

τ , τ s :

Deviatoric stress tensor (N/m2)

References

  1. Verö J, Met Ind 48 (1936) 431.

    Google Scholar 

  2. Bishop H F, Ackerlind C G, and Pellini W S, AFS Trans 65 (1957) 247.

    Google Scholar 

  3. Laxmanan V, and Flemings M C, Met Trans A 11 (1980) 1927.

    Article  Google Scholar 

  4. Suery M, and Flemings M C, Met Trans A 13 (1982) 1809.

    Article  Google Scholar 

  5. Flemings M C, Met Trans B 22 (1991) 957.

    Article  Google Scholar 

  6. Dahle A K, and Arnberg L, Acta Mater 45 (1997) 547.

    Article  Google Scholar 

  7. Dahle A K, and StJohn D H, Acta Mater 47 (1998) 31.

    Article  Google Scholar 

  8. Dahle A K, StJohn D H, Thevik H J, and Arnberg L, Metall Mater Trans B 30 (1999) 287.

    Article  Google Scholar 

  9. Nguyen T G, Favier D, and Suery M, Int J Plast 10 (1994) 663.

    Article  Google Scholar 

  10. Martin C L, Brown S B, Favier D, and Suery M, Mater Sci Eng 202 (1995) 13.

    Article  Google Scholar 

  11. Martin C L, Favier D, and Suery M, Int J Plast 13 (1997) 237.

    Article  Google Scholar 

  12. Martin C L, Favier D, and Suery M, Int J Plast 15 (1999) 981.

    Article  Google Scholar 

  13. Ludwig O, Drezet J-M, Martin C L, and Suery M, Metall Mater Trans A 36 (2005) 1525.

    Article  Google Scholar 

  14. Fachinotti V D, Le Corre S, Triolet N, Bobadilla M, and Bellet M, Int J Numer Methods Eng 67 (2006) 1341.

    Article  Google Scholar 

  15. Bellet M, in 9th International Conference on Numerical Methods in Industrial Forming Processes, (eds) Cesar de Sa J M A, and Santos A D, American Institute of Physics, Porto (2007), p 1369.

  16. Kumar A, and Dutta P, Int J Heat Mass Transf 48 (2005) 3674.

    Article  Google Scholar 

  17. Kumar A, Walker M J, Sundarraj S, and Dutta P, Metall Mater Trans B 42 (2011) 825.

    Article  Google Scholar 

  18. Kumar A, Walker M J, Sundarraj S, and Dutta P, Metall Mater Trans B 42 (2011) 783.

    Article  Google Scholar 

  19. Ludwig A, and Wu M, Metall Mater Trans A 33 (2002) 3673.

    Article  Google Scholar 

  20. Wu M, Ludwig A, Bührig-Polaczek A, Fehlbier M, and Sahm P R, Int J Heat Mass Transf 46 (2003) 2819.

    Article  Google Scholar 

  21. Wu M, and Ludwig A, Mater Sci Eng A 413–414 (2005) 192.

    Article  Google Scholar 

  22. Wu M, Ludwig A, and Luo J, Mater Sci Forum 475–479 (2005) 2725.

    Article  Google Scholar 

  23. Ludwig A, and Wu M, Mater Sci Eng A 413–414 (2005) 109.

    Article  Google Scholar 

  24. Wang T, Wu M, Ludwig A, Abondano M, Pustal B, and Bührig-Polaczek A, Int J Cast Met Res 18 (2005) 221.

    Article  Google Scholar 

  25. Wu M, and Ludwig A, Metall Mater Trans A 37 (2006) 1613.

    Article  Google Scholar 

  26. Wu M, and Ludwig A, in 11th International Conference on Modeling of Casting, Welding and Advanced Solidification Processes (MCWASP XI), Opio, France, (eds) Gandin C-A, and Bellet M (2006), p 291.

  27. Wang T M, Lin T J, Cao Z Q, Jin J Z, Grimmig T, Bührig-Polaczek A, Wu M, and Ludwig A, Acta Metall Sin 42 (2006) 591.

    Google Scholar 

  28. Wu M, and Ludwig A, Metall Mater Trans A 38 (2007) 1465.

    Article  Google Scholar 

  29. Wu M, and Ludwig A, Acta Mater 57 (2009) 5621.

    Article  Google Scholar 

  30. Wu M, and Ludwig A, Acta Mater 57 (2009) 5632.

    Article  Google Scholar 

  31. Wu M, Fjeld A, and Ludwig A, Comput Mater Sci 50 (2010) 32.

    Article  Google Scholar 

  32. Wu M, Ludwig A, and Fjeld A, Comput Mater Sci 50 (2010) 43.

    Article  Google Scholar 

  33. Kharicha A, Stefan-Kharicha M, Ludwig A, and Wu M, IOP Conf Ser Mater Sci Eng 33 (2012) 012042.

    Article  Google Scholar 

  34. Wu M, Ahmadein M, Kharicha A, Ludwig A, Li J, and Schumacher P, IOP Conf Ser Mater Sci Eng 33 (2012) 012075.

    Article  Google Scholar 

  35. Wu M, Li J, Kharicha A, Ludwig A, in 1st International Conference on Ingot Casting, Rolling and Forging (2012), p 1.

  36. Li J, Wu M, Ludwig A, and Kharicha A, Int J Heat Mass Transf 72 (2014) 668.

    Article  Google Scholar 

  37. Ishii M, and Zuber N, AIChE J 25 (1979) 843.

    Article  Google Scholar 

  38. Ni J, and Beckermann C, Metall Trans B 22 (1991) 349.

    Article  Google Scholar 

  39. Ludwig A, Vakhrushev A, Holzmann T, Wu M, and Kharicha A, IOP Conf Ser Mater Sci Eng 84 (2015) 012102.

    Article  Google Scholar 

  40. Wang C Y, Ahuja S, Beckermann C, and De Groh III H C, Metall Mater Trans B 26 (1995) 111.

    Article  Google Scholar 

  41. Ludwig A, Kharicha A, Hölzl C, Domitner J, Wu M, and Pusztai T, Eng Anal Bound Elem 45 (2014) 29.

    Article  Google Scholar 

  42. Combeau H, Založnik M, Hans S, and Richy P E, Metall Mater Trans B 40 (2009) 289.

    Article  Google Scholar 

  43. Wu M, Li J, Ludwig A, and Kharicha A, Comput Mater Sci 79 (2013) 830.

    Article  Google Scholar 

  44. Kozlowski P F, Thomas B G, Azzi J A, and Wang H, Metall Mater Trans A 23 (1992) 903.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the FWF Austrian Science Fund (P22614-N22), FFG Bridge Early Stage (No. 3893791), and the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development within the framework of the Christian Doppler Laboratory for Advanced Process Simulation of Solidification and Melting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ludwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, A., Vakhrushev, A., Wu, M. et al. Simulation of Crystal Sedimentation and Viscoplastic Behavior of Sedimented Equiaxed Mushy Zones. Trans Indian Inst Met 68, 1087–1094 (2015). https://doi.org/10.1007/s12666-015-0651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0651-4

Keywords

Navigation