Skip to main content
Log in

Modelling of Columnar-to-Equiaxed Transition and Inclusion Distribution in Continuously Cast Steel Billets

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Solidification castings can exhibit a columnar or an equiaxed morphology or a combination of both. Since the relative proportions of these two components strongly influence the internal quality of cast product, the study of morphological transition from columnar to equiaxed structure (CET) becomes important. The transition also affects quality parameters like inclusion distribution in castings which has a significant bearing on the properties of cast products. In this work, a combined model for CET and inclusion distribution in continuously cast steel billets is presented. A conduction based transient thermal solidification model is employed in conjunction with Hunt’s criterion for CET to predict the evolution of melt temperature, the location of transition and area-fractions of columnar and equiaxed zones across the billet cross-section. A correlation between melt temperature and equiaxed nuclei density is proposed and incorporated in the model to account for a more realistic variation of CET with melt superheat. The model is compared with available experimental data and is used to explore the effect of process parameters on CET and determine the spatial distribution of non-metallic inclusions in the solidified billet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beckermann C, and Wang C Y, Ann Rev Heat Transf 6 (1995) 115.

    Article  Google Scholar 

  2. Prescott P J, and Incropera F P, Adv Heat Transf 28 (1996) 231.

    Article  Google Scholar 

  3. Pardeshi R, Dutta P, and Singh A K, Ind Eng Chem Res 48.19 (2009) 8789.

    Article  Google Scholar 

  4. Flood S C, and Hunt J D, ASM Handbook, Materials Park, OH 15 (1998) p 130.

  5. Ghosh A, Sadhana 26 (2001) 5.

  6. Kurz W, Bezencon C, and Gaumann M, Sci Technol Adv Mater 2 (2001) 185.

    Article  Google Scholar 

  7. Gupta A, Cecen A, Goyal S, Singh A K, and Kalidindi S R, Acta Mater 91 (2015) 239.

    Article  Google Scholar 

  8. Gupta A, Goyal S, Padmanabhan K A, Singh A K, Int J Adv Manuf Technol 77(2015) 565.

    Article  Google Scholar 

  9. Walton D, and Chalmers B, Trans TMS-AIME 215 (1959) 447.

    Google Scholar 

  10. Chalmers B, Principles of Solidification, Wiley, New York, NY (1964), p 255.

    Google Scholar 

  11. Biloni N, and Chalmers B, J Mater Sci 3 (1968) 139.

    Article  Google Scholar 

  12. Morando R, Biloni H, Cole G S, and Bulling G F, Metall Mater Trans 1 (1970) 1407.

    Google Scholar 

  13. Chalmers B, J Aust Inst Metals 8 (1963) 255.

    Google Scholar 

  14. Itoh Y, Takao S, Okajima T, and Tashiro K, Tetsu-to-Hagane 66 (1980) 710.

    Google Scholar 

  15. Hunt, J D, Mater Sci Eng 65.1 (1984) 75

    Article  Google Scholar 

  16. Flood S C, and Hunt J D, J Cryst Growth 82.3 (1987) 543.

    Article  Google Scholar 

  17. Dustin I, and Kurz W, Z Metall 77.5 (1986) 265.

    Google Scholar 

  18. Dong H B, and Lee P D, ActaMater 53.3 (2005) 659.

    Article  Google Scholar 

  19. Martorano M A, and Biscuola V B, Acta Mater 57.2 (2009) 607.

    Article  Google Scholar 

  20. Straffelini G, Lutterotti L, Tonolli M, and Lestani M, ISIJ Int 51.9 (2011) 1448.

    Article  Google Scholar 

  21. Duggan G, Tong M, and Browne D J, Comput Mater Sci 97 (2015) 285.

    Article  Google Scholar 

  22. Wang C Y, and Beckermann C, Metall Mater Trans A 25.5 (1994) 1081.

    Google Scholar 

  23. Martorano M A, Beckermann C, and Gandin C A, Metall Mater Trans A 34.8 (2003) 1657.

    Article  Google Scholar 

  24. Jung H, Mangelinck Noel N, Nguyen H, Billia B, Reinhart G, and Buffet A, Metall Mater Int 15.1 (2009) 21.

  25. Doherty R D, Cooper P D, and Bradbury M H, Metall Trans A 8.3 (1977) 397.

    Article  Google Scholar 

  26. Choudhary S K, and Ghosh A, ISIJ Int 34.4 (1994) 338.

    Article  Google Scholar 

  27. Choudhary S K, and Ganguly S, ISIJ Int 47.12 (2007) 1759.

    Article  Google Scholar 

  28. Oksman P, Yu S, Kytonen H, and Louhenkilpi S, Acta Polytech Hung 11.9 (2014) 5.

  29. Thomas B G, Samarasekera, I V, and Brimacombe J K, Metall Trans B, 18.1 (1987) 119.

    Article  Google Scholar 

  30. Cramb A, The Making, Shaping and Treating of Steel, 11th edition, Casting Volume, AIST (2010).

  31. Sengupta J, Thomas B G, and Wells M A, Metall Mater Trans A 36A (2005) 187.

    Article  Google Scholar 

  32. Brimacombe J K, Agarwal P K, Hibbins S, Prabhakar B, and Baptista L A, Iron Steel Soc 2 (1984) 109.

    Google Scholar 

  33. Shibata H, Itoyama S, Kishimoto Y, Takeuchi S, and Sekiguchi H, ISIJ Int 46.6 (2006) 921.

    Article  Google Scholar 

  34. Meng Y, and Thomas B G, Metall Mater Trans B 34B.5 (2003) 685.

    Article  Google Scholar 

  35. Long M, Zhang L, and Fei Lu F, ISIJ Int 50.12 (2010) 1792.

  36. Mapelli C, and Baragiola S, Ironmak Steelmak 35.6 (2008) 441.

  37. Zhang L, and Thomas B G, in XXIV National Steelmaking Symposium, Morelia, Mich, Mexico (2003) 138.

  38. Fehérvári G, Gábor Verő B, Kardos I, and Csepeli Z, Mater Sci Forum 537 (2007) 345.

Download references

Acknowledgments

The authors wish to thank Dr. B.P. Gautham, Principal Scientist, TRDDC for his assistance with the trials, support and valuable discussions. Authors also wish to acknowledge the encouragement and support from TCS CTO, Mr. K Ananth Krishnan, and TRDDC Process Engineering Lab Head, Dr. Pradip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amarendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaube, S., Tennyson, G. & Singh, A. Modelling of Columnar-to-Equiaxed Transition and Inclusion Distribution in Continuously Cast Steel Billets. Trans Indian Inst Met 68, 1207–1213 (2015). https://doi.org/10.1007/s12666-015-0705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0705-7

Keywords

Navigation