Skip to main content
Log in

Effects of Austenitization Temperature and Compressive Stress During Bainitic Transformation on the Stability of Retained Austenite

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effects of stress and austenitization temperature on the carbon content and morphology of retained austenite (RA) have been investigated. The stability of RA has been analyzed. An interesting finding is that the increase in the amount of bainite is not accompanied by the increase in the carbon content in RA under the effect of stress. This does not match with what is expected from the bainitic transformation theory. The amount of bainitic transformation and stress both affect the carbon content in RA. In addition, the stress during bainitic transformation helps to increase the stability of RA by decreasing the amount of blocky RA, whereas it has little effect on the carbon content in RA. Moreover, the increase in austenitization temperature is beneficial to increasing the stability of RA, whereas it has no significant effect on the morphology of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rehrl J, Mraczek K, Pichler A, and Werner E, Mater Sci Eng A 590 (2014) 360.

    Article  Google Scholar 

  2. Speer J G, Matlock D K, DeCooman B C, and Schroth J G, Acta Mater 51 (2003) 2611.

    Article  Google Scholar 

  3. Clarke A J, Speer J G, Matlock D K, Rizzo F C, Edmonds D V, and Santofimia M J, Scripta Mater 61 (2009) 149.

    Article  Google Scholar 

  4. Lee S J, Lee S, and De Cooman B C, Scripta Mater 64 (2011) 649.

    Article  Google Scholar 

  5. Shi J, Sun X J, Wang M Q, Hui W J, Dong H, and Cao W Q, Scripta Mater 63 (2010) 815.

    Article  Google Scholar 

  6. Wang J, and van der Zwaag S, Metall Mater Trans A 32 (2001) 1527.

    Article  Google Scholar 

  7. Garcia-Mateo C, Caballero F G, Chao J, Capdevila C, and Garcia de Andres C, J Mater Sci 44 (2009) 4617.

  8. Feng Q X, Li L F, Yang W Y, and Sun Z Q, Mater Sci Eng A 603 (2014) 169.

    Article  Google Scholar 

  9. Timokhina I B, Hodgson P D, and Pereloma E V, Metall Mater Trans A 35 (2004) 2331.

    Article  Google Scholar 

  10. Bhadeshia H K D H, David S A, Vitek J M, and Reed R W, Mater Sci Technol 7 (1991) 686.

    Article  Google Scholar 

  11. Matsuzaki A, Bhadeshia H K D H, and Harada H, Acta Metall Mater 42 (1994) 1081.

    Article  Google Scholar 

  12. Kundu S, Hase K, and Bhadeshia H K D H, Proc R Soc A 463 (2007) 2309.

    Article  Google Scholar 

  13. Kundu S, Verma A K, and Sharma V, Metall Mater Trans A 43A (2012) 2552.

    Article  Google Scholar 

  14. Tian L, Ao Q, and Li S L, J Mater Res 29 (2014) 2994.

    Article  Google Scholar 

  15. Zhou M X, Xu G, Wang L and Yuan Q, Metals 6 (2016) 119.

    Article  Google Scholar 

  16. Kammouni A, Saikaly W, Dumont M, Marteau C, Bano X, and Charaï A, Mater Sci Eng A 518 (2009) 89.

    Article  Google Scholar 

  17. Wang C Y, Shi J, Cao W Q, and Dong H, Mater Sci Eng A 527 (2010) 3442.

    Article  Google Scholar 

  18. Babu S S, Specht E D, David S A, Karapetrova E, Zschack P, Peet M, and Bhadeshia H K D H, Metall Mater Trans A 36 (2005) 3281.

    Article  Google Scholar 

  19. Bhadeshia H K D H, Mat Sci Eng A 273 (1999) 58.

    Article  Google Scholar 

  20. Ardell A J, and Prikhodko S V, Acta Mater 51 (2003) 013–5019.

    Article  Google Scholar 

  21. Bhadeshia H K D H, and Edmonds D V, Metall Trans A 10 (1979) 895.

    Article  Google Scholar 

  22. Xu G, Liu F, Wang L, and Hu H J, Scripta Mater 68 (2013) 833.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial supports from National Natural Science Foundation of China (NSFC) (No. 51274154), National High Technology Research and Development Program of China (No. 2012AA03A504), State Key Laboratory of Development and Application Technology of Automotive Steels (Baosteel Group).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Xu, G., Wang, L. et al. Effects of Austenitization Temperature and Compressive Stress During Bainitic Transformation on the Stability of Retained Austenite. Trans Indian Inst Met 70, 1447–1453 (2017). https://doi.org/10.1007/s12666-016-0941-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0941-5

Keywords

Navigation