Skip to main content

Advertisement

Log in

Multi-objective Optimization of Welding Parameters in MMAW for Nano-structured Hardfacing Material Using GRA Coupled with PCA

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Hardfacing is one of the most productive and practical approaches to cut down operating expense on the maintenance front and at the same time to improve performance and reliability of the equipment. Presence of nano-particles in hard facing materials significantly enhances surface area to volume ratio and accordingly it improves conductivity, hardness, heat and wear resistant properties. The main objective of this paper is to efficiently apply manual metal arc welding process for hardfacing of nano-structure based electrode. The most important process variables that have been considered in conducting the experiments are welding current, arc voltage and welding speed; while the response parameters include weld bead width, reinforcement and bead hardness, respectively. Taguchi’s (L25) orthogonal array has been used to perform the experimental runs. A combination of grey relational analysis coupled with principal component analysis has been applied to identify optimal settings of the input process parameters. Moreover, the exact input and output welding parameters have been examined with the help of genetic algorithm. Finally, confirmation test has also been carried out with the optimal welding process parameters to validate the experiment result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu D, Liu R, Wei Y, Ma Y, and Zhu K, Appl Surf Sci 271 (2013) 253.

    Article  Google Scholar 

  2. Io S I, Just C, and Xhiku F, J Mater Des 33 (2012) 459.

    Article  Google Scholar 

  3. Garg R K, Singh K K, Sachdeva A, Vishal S, Ojha K, and Singh S, Int J Adv Manuf Technol 50 (2010) 799.

    Article  Google Scholar 

  4. Buchely M F, Gutierrez J C, Leon L M, and Toro A, Wear 259 (2005) 52.

    Article  Google Scholar 

  5. Yao M X, Wu J B C, and Xie Y, Mater Sci Eng A 407 (2005) 234.

    Article  Google Scholar 

  6. Kirchgaßner M, Badisch E, and Franek F, Wear 265 (2008) 772.

    Article  Google Scholar 

  7. Wang X, Han F, Liu X, Qu S, and Zou Z, Wear 265 (2008) 583.

    Article  Google Scholar 

  8. Qi X, Jia Z, Yang Q, and Yang Y, Surf Coat Technol 205 (2011) 5510.

    Article  Google Scholar 

  9. Zhou Y F, Yang Y L, Yang J, Hao F F, Li D, Ren X J, and Yang Q X, Appl Surf Sci 258 (2012) 6653.

    Article  Google Scholar 

  10. Yang J, Yang Y, Zhou Y, Qi X, Gao Y, Ren X, and Yang Q, Welding J 92 (2013) 225-s.

  11. Yang J, Tian J, Hao F, Dan T, Ren X, Yang Y, and Yang Q, Appl Surf Sci 289 (2014) 437.

    Article  Google Scholar 

  12. Abou-El-Hossein K A, Kadirgamaa K, Hamdib M, Benyounis, K Y, J Mater Proc Tech 182 (2007) 241.

    Article  Google Scholar 

  13. Alaswad A, Benyounis K Y, Olabi A G, Adv Eng Softw 42 (2011) 917.

    Article  Google Scholar 

  14. Olabi A G, Benyounis K Y, Hashmi M S J, Strain: An Int J Exp Mech 43 (2007) 37.

    Article  Google Scholar 

  15. Benyounis K Y, Olabi A G, Hashmi M S J, J Mater Proc Tech 164–165 (2005) 978.

    Article  Google Scholar 

  16. Montingelli M E, Benyounis K Y, Quilty B, Stokes J, Olabi A G, Appl Energy 177 (2016) 671.

    Article  Google Scholar 

  17. Dundu M, J Eng Des Technol 12 (2014) 410.

    Google Scholar 

  18. Jiang P, Cao L, Zhou Qi, Gao Z, Rong Y, Shao X, Int J Adv Manuf Technol. doi:10.1007/s00170-016-8382-1.

  19. Gao Z, Shao X, Jiang P, Cao L, Zhou Qi, Yue C, Liu Y, Wang C, Opt Laser Technol 83 (2016) 153.

    Article  Google Scholar 

  20. Zhou Qi, Rong Y, Shao X, Jiang, Gao Z, Cao L, J Intell Manuf. doi:10.1007/s10845-015-1187-5.

  21. Benyounis K Y, Olabi A G, Hashmi M S J, Opt Laser Technol 40 (2008) 76.

    Article  Google Scholar 

  22. Saha A, Majumder H, Int J Engg Res Afri 23 (2016) 24.

    Article  Google Scholar 

  23. Deng J L, J Grey Syst 1 (1989) 1.

    Google Scholar 

  24. Pradhan M K, Int J Adv Manuf Technol 68 (2013) 591.

    Article  Google Scholar 

  25. Maity K P, Bagal D K, Int J Adv Manuf Technol 78 (2015) 161.

    Article  Google Scholar 

  26. Pearson K, Phil Manag Ser 62 (1901) 559.

    Article  Google Scholar 

  27. Jagadish, Ray A, Int J Adv Manuf Technol (2015). doi:10.1007/s00170-014-6372-8.

Download references

Acknowledgments

The authors are very thankful to the reviewers for their constructive comments and suggestions on how to improve the quality of this paper. The authors gratefully acknowledge the kind support and cooperation provided by M/S L & T Limited, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Mondal, S.C. Multi-objective Optimization of Welding Parameters in MMAW for Nano-structured Hardfacing Material Using GRA Coupled with PCA. Trans Indian Inst Met 70, 1491–1502 (2017). https://doi.org/10.1007/s12666-016-0945-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0945-1

Keywords

Navigation