Skip to main content

Advertisement

Log in

Effect of Lead Addition and Milling on Densification and Mechanical Properties of 6061 Aluminium Alloys

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present work, one batch of prealloyed 6061Al powder was mixed with different lead compositions (5, 10, 15 vol.%) and another set with same composition was ball-milled for 5 h at 300 rpm. Microstructural features such as lattice constant, crystallite size, particle size and morphology were studied using XRD, particle size analyzer and SEM. Both the as-mixed as well as ball-milled powders were compacted at 300 MPa and sintered under N2 atmosphere for 1 h in tube furnace at 590 °C. The ball milling of 6061Al alloy powder improved sinter density and densification while lead addition showed negligible influence on these parameters. The microstructure of as-mixed 6061Al–Pb alloys exhibited equiaxial morphology whereas ball-milling resulted in elongated grains with uniform lead distribution. Quasi-static compressive mechanical behavior was investigated for 6061Al–Pb alloys at 1 × 10−3 s−1 strain rate. Results indicated that ultimate compressive and yield strength were sensitive to milling and lead volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hunt W H, New Directions in Aluminum-Based P/M Materials for Automotive Applications. SAE Technical Paper (2000).

  2. Daver E M, Ullrich W J, and Balubhai Patel K, Key Eng. Mater., Trans Tech Publ (1991) 401–428.

  3. Zhu M, Gao Y, Chung C Y, Che Z X, Luo K C, and Li B L, Wear 242 (2000) 47.

    Article  Google Scholar 

  4. An J, Liu Y B, and Lu Y, Mater Sci Eng A 373 (2004) 294.

    Article  Google Scholar 

  5. Sastry C, and Ranga J G, Indian J Eng Mater Sci 17 (2010) 56.

    Google Scholar 

  6. McAlister A J, Bull Alloy Phase Diagr 5 (1984) 69.

    Article  Google Scholar 

  7. MacKay M L, Met Prog 111 (1977) 32.

    Google Scholar 

  8. Moore K I, Zhang D L, and Cantor B, Acta Metall Mater 38 (1990) 1327.

    Article  Google Scholar 

  9. Mohan S, Agarwala V, and Ray S, Wear 157 (1992) 9.

    Article  Google Scholar 

  10. Benjamin J S, Metall Trans 1 (1970) 2943.

    Google Scholar 

  11. Suryanarayana C, Prog Mater Sci 46 (2001) 1.

    Article  Google Scholar 

  12. Zhu M, Che X Z, Li Z X, Lai J K L, and Qi M, J Mater Sci 33 (1998) 5873.

    Article  Google Scholar 

  13. Apelian D, and Saha D, in Proceedings of Second International P/M Light Alloys Automotive Conference (2000) 1.

  14. Padmavathi C, and Upadhyaya A, Trans Indian Inst Met 64 (2011) 345.

    Article  Google Scholar 

  15. Ziani A, and Pelletier S, Int J Powder Metall 35 (1999) 59.

    Google Scholar 

  16. Lefebvre L P, and Thomas Y, Int J Powder Metall 35 (1999) 45.

    Google Scholar 

  17. Simchi A, and Veltl G, Powder Metall 46 (2003) 159.

    Article  Google Scholar 

  18. Lumley R N, Sercombe T B, and Schaffer G M, Metall Mater Trans A 30 (1999) 457.

    Article  Google Scholar 

  19. Schaffer G B, Sercombe T B, and Lumley R N, Mater Chem Phys 67 (2001) 85.

    Article  Google Scholar 

  20. Pieczonka T, Schubert T, Baunack S, and Kieback B, Mater Sci Eng A 478 (2008) 251.

    Article  Google Scholar 

  21. Gökçe A, and Fındık F, J Achiev Mater Manuf Eng 30 (2008) 157.

    Google Scholar 

  22. Martin J M, Gomez-Acebo T, and Castro F, Powder Metall 45 (2002) 173.

    Article  Google Scholar 

  23. Lumley R N, and Schaffer G B, Scr Mater 35 (1996) 589.

    Article  Google Scholar 

  24. Pathak J P, and Mohan S, Bull Mater Sci 26 (2003) 315.

    Article  Google Scholar 

  25. Sheng H W, Zhou F, Hu Z Q, and Lu K, J Mater Res 13 (1998) 308.

    Article  Google Scholar 

  26. Williamson G K, and Hall W H, Acta Metall 1 (1953) 22.

    Article  Google Scholar 

  27. Suryanarayana C, and Norton M G, Microsc Microanal 4 (1998) 513.

    Article  Google Scholar 

  28. Cullity B D, Elements of X-Ray Diffraction. Addison-Wesley, New York, (1978), p 295.

    Google Scholar 

  29. Prabhu Y T, Rao K V, Kumar V S, and Kumari B S, World J Nano Sci Eng 4 (2014) 21.

    Article  Google Scholar 

  30. Sivasankaran S, Sivaprasad K, Narayanasamy R, and Satyanarayana P V, Mater Charact 62 (2011) 661.

    Article  Google Scholar 

  31. Jeyasimman D, Narayanasamy R, and Ponalagusamy R, Adv Powder Technol 26 (2015) 1171.

    Article  Google Scholar 

  32. Asgharzadeh H, and Simchi A, Powder Metall 52 (2009) 28.

    Article  Google Scholar 

  33. Padmavathi C, Upadhyaya A, and Agrawal D, Mater Res Innov 15 (2011) 294.

    Article  Google Scholar 

  34. Schaffer G B, Hall B J, Bonner S J, Huo S H, and Sercombe T B, Acta Mater 54 (2006) 131.

    Google Scholar 

  35. German R M, Powder Metallurgy Science, Met. Powder Ind. Fed., Princeton, NJ (1994), p 290.

    Google Scholar 

  36. Momeni H, Razavi H, and Shabestari S G, Iran J Mater Sci Eng 8 (2011) 10.

    Google Scholar 

  37. Gaur D K, Sintering of 6061Al-Alloy and Its Based Composites, M.Tech Thesis, Indian Institute of Technology, Kanpur, India (1993).

  38. Youseffi M, and Showaiter N, Powder Metall 49 (2006) 240.

    Article  Google Scholar 

  39. Schaffer G B, and Huo S H, Powder Metall 42 (1999) 219.

    Article  Google Scholar 

  40. Scattergood R O, Koch C C, Murty K L, and Brenner D, Mater Sci Eng A 493 (2008) 3.

    Article  Google Scholar 

  41. Wei Q, Jiao T, Ramesh K T, Ma E, Kecskes L J, Magness L, Dowding R, Kazykhanov V U, and Valiev R Z, Acta Mater 54 (2006) 77.

    Google Scholar 

  42. Liu J, Li S, Fan A, and Sun H, Mater Sci Eng A 487 (2008) 235.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the characterization facilities and the staff support received from the Advanced Center for Materials Science (ACMS) of Indian Institute of Technology, Kanpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Paidpilli.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paidpilli, M., Verma, K., Pandey, R. et al. Effect of Lead Addition and Milling on Densification and Mechanical Properties of 6061 Aluminium Alloys. Trans Indian Inst Met 70, 2017–2026 (2017). https://doi.org/10.1007/s12666-016-1024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-1024-3

Keywords

Navigation