Skip to main content
Log in

Microstructure Evolution and Charpy Toughness Relationship of A-TIG Weld Fusion Zone for Varying Tempering Time

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In the present research work, activating flux tungsten inert gas (A-TIG) weld joints of AISI 409 ferritic stainless steel was subjected to post weld heat treatment at 750 °C followed by the air cooling. To study the effect of tempering time on the microstructural and mechanical properties of the weld fusion zone, tempering time was varied from 2 to 10 h. The current study also demonstrated the comprehensive microstructure–mechanical property relationships using the collective techniques of optical and electron microscopy, electron dispersive X-ray analysis techniques, and X-ray diffraction analysis. The results indicated that the Charpy toughness of the fusion zone improved after 2 and 4 h of tempering, but the further stretch in tempering time resulted in a drastic drop in Charpy toughness. The shape of the sulphide inclusions was found to be an important factor in deciding the Charpy toughness of the A-TIG weld fusion zone. Maximum impact energy of 116 ± 9 J was observed by the sample tempered for 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Mohandas T, Madhusudhan Reddy G, and Naveed M, J Mater Process Technol 94 (1999) 133. https://doi.org/10.1016/s0924-0136(99)00092-8.

    Article  Google Scholar 

  2. Anttila S, Karjalainen P, and Lantto S, Weld World 57 (2013) 335. https://doi.org/10.1007/s40194-013-0033-7.

    Google Scholar 

  3. Modenesi P J, Apolinário E R, and Pereira I M, J Mater Process Technol 99 (2000) 260. https://doi.org/10.1016/s0924-0136(99)00435-5.

    Article  Google Scholar 

  4. Vidyarthy R S, Dwivedi D K, and Muthukumaran V, Mater Manuf Process 6914 (2017) 1. https://doi.org/10.1080/10426914.2017.1303154.

    Google Scholar 

  5. Tseng K-H, and Hsu C-Y, J Mater Process Technol 211 (2011) 503. https://doi.org/10.1016/j.jmatprotec.2010.11.003.

    Article  Google Scholar 

  6. Vidyarthy R S, and Dwivedi D K, J Manuf Process 22 (2016) 211. https://doi.org/10.1016/j.jmapro.2016.03.012.

    Article  Google Scholar 

  7. Vidyarthy R S, Kulkarni A, and Dwivedi D K, Mater Sci Eng A 695 (2017) 249. https://doi.org/10.1016/j.msea.2017.04.038.

    Article  Google Scholar 

  8. Vidyarthy R S, and Dwivedi D K, in 7 International Conference on Creep, Fatigue Creep-Fatigue Interaction, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India, 19–22 January 2016, (2016); p 898.

  9. Vidyarthy R S, Dwivedi D K, and Vasudevan M, J Mater Eng Perform 26 (2017) 1391. https://doi.org/10.1007/s11665-017-2538-5.

    Article  Google Scholar 

  10. Maduraimuthu V, Vasudevan M, and Parameswaran P, Trans Indian Inst Met 68 (2015) 181. https://doi.org/10.1007/s12666-014-0456-x.

    Article  Google Scholar 

  11. Vasantharaja P, and Vasudevan M, J Nucl Mater 421 (2012) 117. https://doi.org/10.1016/j.jnucmat.2011.11.062.

    Article  Google Scholar 

  12. Arivazhagan B, and Vasudevan M, J Manuf Process 18 (2015) 55. https://doi.org/10.1016/j.jmapro.2014.12.003.

    Article  Google Scholar 

  13. Scalise T C, de Oliveira M C L, Sayeg I J, and Antunes R A, J Mater Eng Perform 23 (2014) 2164. https://doi.org/10.1007/s11665-014-1010-z.

    Article  Google Scholar 

  14. Pandey C, Giri A, and Mahapatra M M, Mater Sci Eng A 664 (2016) 58. https://doi.org/10.1016/j.msea.2016.03.132.

    Article  Google Scholar 

  15. Thomas C R, and Apps R L, Weld Heat-Affected Zone Properties in AISI 409 Ferritic Stainless Steel, ASTM, West Conshohocken (1980), p 161.

    Google Scholar 

  16. Park T J, Kong J P, Uhm S H, Woo I S, Lee J S, and Kang C Y, J Mater Process Technol 211 (2011) 415. https://doi.org/10.1016/j.jmatprotec.2010.10.017.

    Article  Google Scholar 

  17. Da Silva G F, Tavares S S M, Pardal J M, Silva M R, De Abreu H F G, J Mater Sci 46 (2011) 7737. https://doi.org/10.1007/s10853-011-5753-8.

    Article  Google Scholar 

  18. Pandey C, Saini N, Mahapatra MM, and Kumar P, Eng Fail Anal 71 (2017) 131. https://doi.org/10.1016/j.engfailanal.2016.06.012.

    Article  Google Scholar 

  19. Vasantharaja P, Maduarimuthu V, Vasudevan M, and Palanichamy P, Mater Manuf Process 27 (2012) 1376. https://doi.org/10.1080/10426914.2012.663135.

    Article  Google Scholar 

  20. Lula R A, Toughness of Ferritic Stainless Steels. STP 706, ASTM International, West Conshohocken (1980). https://doi.org/10.1520/stp706-eb

    Book  Google Scholar 

  21. Shao X, Wang X, Ji C, Li H, Cui Y, and Zhu G, Int J Miner Metall Mater 22 (2015) 483. https://doi.org/10.1007/s12613-015-1097-8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided to this study by the Board of Research in Nuclear Sciences (BRNS) under the Grant No. 36(2)/14/70/2014-BRNS/10416, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Shanker Vidyarthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidyarthy, R.S., Dwivedi, D.K. Microstructure Evolution and Charpy Toughness Relationship of A-TIG Weld Fusion Zone for Varying Tempering Time. Trans Indian Inst Met 71, 1287–1300 (2018). https://doi.org/10.1007/s12666-017-1266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-017-1266-8

Keywords

Navigation