Skip to main content
Log in

Synthesis of Nanoalumina/Graphene Oxide Hybrid for Improvement Tribological Property of Aluminum

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this research, an efficient, facile and low-cost chemical method was the developed for preparation of Al2O3/graphene oxide (GO) hybrid nanoparticle (Al2O3Nps/GO), through in situ synthesis of Al2O3Nps in the presence of GO. Al2O3Nps/GO hybrid nanoparticles added to aluminum powder and nanocomposites were fabricated by powder metallurgy processing and consolidated via the spark plasma sintering. Structure, morphology and composition of the hybrid particle were investigated by means of X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectra and thermogravimetric analysis. The results confirmed successful incorporation of alumina over GO surface and formation of pure and homogenized γ-Al2O3Nps/GO hybrid particle. Physical and tribological properties of hybrid nanocomposite were investigated by using density, hardness and wear analyses. High relative density was obtained for Al 1 wt% γ-Al2O3Nps/GO. Tribological property was studied by pin-on-disk tribometer and showed that the friction coefficient significantly decreased with increasing γ-Al2O3Nps/GO content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ponomarenko LA, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, and Geim AK, Science 320 (2008) 356.

    Article  Google Scholar 

  2. Tong V C, Chen L M, Allen M J, Wassail J K, Nelson K R, Kaner B, and Yang Y, Nano Lett 9 (2009) 1949.

    Article  Google Scholar 

  3. Yoo E J, Kim J, Hosono E, Zhou H S, Kudo T, and Honma I, Nano Lett, 8 (2008) 2277.

    Article  Google Scholar 

  4. Kovtyukhova, N I, Ollivier P J, Martin B R, Mallouk T E, Chizhik S A, Buzaneva E V, and Gorchinskiy A D, Chem Mater 11 (1999) 771.

    Article  Google Scholar 

  5. Kwon H, Mondal J, AlOgab K, Sammelselg V, Takamichi M, Kawaski A, and Leparoux M, J Alloys Compd 698 (2017) 807.

    Article  Google Scholar 

  6. Ju J M, Wang G, and Sim K H, J Alloys Compd 704 (2017) 585.

    Article  Google Scholar 

  7. Rashad M, Pan F, Yu Z, Asif M, Lin H, and Pan R, Proc Natl Sci Mater 25 (2015) 460.

    Article  Google Scholar 

  8. Chen F, Gupta N, Rohatgi P K, and Behera R K, JOM 70 (2018) 837.

    Article  Google Scholar 

  9. Ding J, Tsuzuki T, and McCormick P G, J Am Ceram Soc 79 (1996) 2956.

    Article  Google Scholar 

  10. Uyeda R, Prog Mater Sci 35 (1991) 1.

    Article  Google Scholar 

  11. Kurşun A, Bayraktar E, and Enginsoy H M, Compos Part B 90 (2016) 302.

    Article  Google Scholar 

  12. Das D K, Mishra P C, Singh S, and Thakur R K, IJMME 1 (2014) 1.

    Google Scholar 

  13. Li Y N, Zhang W Z, Cao Y F, and Zhang T E, Adv Mater Res 853 (2014) 68.

    Article  Google Scholar 

  14. Chidambaram A, and Bhole SD, Scr Mater 35 (1996) 373.

    Article  Google Scholar 

  15. Pavese M, and Biamino S, J Porous Mater 16 (2009) 59.

    Article  Google Scholar 

  16. Zainy M, Huang N M, Vijay Kumar S, Lim H N, Chia C H, and Harrison I, Mater Lett 89 (2012) 180.

    Article  Google Scholar 

  17. Marlinda A R, Huang N M, Muhamad M R, An’amt M N, Chang B Y S, Yusoff N, Harrison I, Lim H N, Chia C H, and Vijay Kumar S, Mater Lett 80 (2012) 9.

    Article  Google Scholar 

  18. Mo Z, Liu P, Guo R, Deng Z, Zhao Y, and Sun Y, Mater Lett 68 (2012) 416.

    Article  Google Scholar 

  19. Xu C, Wang X, Zhu J W, Yang X J, and Lu L, J Mater Chem 18 (2008) 5625.

    Article  Google Scholar 

  20. Maria Jastrzębska A, Roman Olszyna A, Jureczko J, and Kunicki A, Int J Appl Ceram Technol 12 (2015) 522.

    Article  Google Scholar 

  21. Kim H J, Lee S M, Oh Y S, Yang Y H, Lim Y S, Yoon D H, Lee C, Kim J Y, and Ruoff R S, Sci Rep 4 (2014) 5176.

    Article  Google Scholar 

  22. Hummers W S, and Offeman R E, J Am Chem Soc 80 (1958) 1339.

    Article  Google Scholar 

  23. Nethravathi C, and Rajamathi M, Carbon 46 (2008) 1994.

    Article  Google Scholar 

  24. Bora B, Aomoa N, Bordoloi R K, Srivastava D N, Bhuyan H, Das A K, and Akati M, Curr Appl Phys 12 (2012) 880.

    Article  Google Scholar 

  25. Chang B Y S, Huang N M, An’amt M N, Marlinda A R, Norazriena Y, Muhamad M R, Harrison I, Lim H N, and Chia C H, Int J Nanomed 7 (2012) 3379.

    Google Scholar 

  26. Ferrari A C, and Robertson J, Phys Rev B 61 (2000) 14095.

    Article  Google Scholar 

  27. Tuinstra F, and Koenig J L, J Chem Phys 53 (1970) 1126.

    Article  Google Scholar 

  28. Lim H N, Huang N M, Lim S S, Harrison I, and Chia C H, Int J Nanomed 6 (2011) 1817.

    Article  Google Scholar 

  29. Rengifo S, Zhang C, Harimkar S, Boesl B, and Agarwal A, Tribol Lett 65 (2017) 76.

    Article  Google Scholar 

  30. Jafari M, Enayati M H, Abbasi M H, and Karimzadeh F, J Mater Des 31 (2010) 663.

    Article  Google Scholar 

  31. Shakeri H R, and Wang Z, Metall Mater Trans A 33 (2002) 1699.

    Article  Google Scholar 

  32. Ferguson J, Sheykh-Jaberi F, Kim C S, Rohatgi P K, and Cho K, Mater Sci Eng A 558 (2012) 193.

    Article  Google Scholar 

  33. Kang Y C, and Chan S L I, Mater Chem Phys 85 (2004) 438.

    Article  Google Scholar 

  34. Taya M, and Arsenault R J, Metal Matrix Composites: Thermomechanical Behavior. Pergamon Press, New York, USA (1989).

    Google Scholar 

  35. Deuis R L, Subramanian C, and Yellup J M, Wear 201 (1996) 132.

    Article  Google Scholar 

  36. Kim S W, Lee U J, Han S W, Kim D K, and Ogi K, Compos Part B Eng 34 (2003) 737.

    Article  Google Scholar 

  37. Wozniak J, Kostecki M, Cygan T, Buczek M, and Olszyna A, Compos B 111 (2017) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Salehi Vaziri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi Vaziri, H., Shokuhfar, A. Synthesis of Nanoalumina/Graphene Oxide Hybrid for Improvement Tribological Property of Aluminum. Trans Indian Inst Met 72, 1687–1695 (2019). https://doi.org/10.1007/s12666-019-01614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01614-2

Keywords

Navigation