Skip to main content
Log in

Microstructural, Tribological and Mechanical Properties Evolution of ZrSiO4/A4047 Surface Composite Fabricated through Friction Stir Processing

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this study, zircon sand (ZrSiO4)-reinforced aluminum surface composite up to 15 vol % of microparticles with an average diameter of 3 µm was prepared through multi-pass FSP. The microstructural, mechanical and tribological characterizations of the friction stir-processed ZrSiO4/A4047 surface composite were evaluated. The effects of FSP passes (2, 4 and 6) were evaluated, and it suggests that the surface composite after 6-pass reveals better homogeneous distribution of reinforcement (ZrSiO4) particle in the matrix. The tensile test showed 16, 24 and 44% with increase in FSP passes, respectively, compared to the base metal. Similarly, the microhardness of the surface composite produced through 6-pass FSP was increased to 112 HV while that produced through base metal increased to 74 HV. Also, it was observed that erosion–corrosion resistance and abrasion wear performance were significantly improved with increase in FSP passes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Isanaka S P, Karnati S, and Liou F, Manuf Lett 7 (2016) 11.

    Article  Google Scholar 

  2. Kumaran S T, Kumar M U, Aravindan S, and Rajesh S, J Mater Design Appl 230 (2016) 484.

    Google Scholar 

  3. Pozdniakov A V, Zolotorevskiy V S, Barkov R Y, Lotfy A, and Bazlov A I, J Alloys Compd 664 (2016) 317.

    Article  Google Scholar 

  4. Mazaheri Y, Karimzadeh F, and Enayati M H, J Mater Process Technol 211 (2011) 1614.

    Article  Google Scholar 

  5. Sahraeinejad S, Izadi H, Haghshenas M, and Gerlich A P, Mater Sci Eng A 626 (2015) 505.

    Article  Google Scholar 

  6. Kumar P V, Reddy G M, and Rao K S, Def Technol 11 (2015) 362.

    Article  Google Scholar 

  7. Thankachan T, Prakash K S, and Kavimani V, Mater Manuf Process 33 (2018) 1681.

    Article  Google Scholar 

  8. Zhang Z, Yang R, Guo Y, Chen G, Lei Y, Cheng Y, and Yue Y, Mater Sci Eng A 689 (2017) 411.

    Article  Google Scholar 

  9. Mishra R S, Ma Z Y, and Charit I, Mater Sci Eng A 341 (2003) 307.

    Article  Google Scholar 

  10. Mishra R S, Mahoney M W, McFadden S X, Mara N A, and Mukherjee A K, Scr Mater 42 (2000) 163.

    Article  Google Scholar 

  11. Rahsepar M, and Jarahimoghadam H, Mater Sci Eng A 671 (2016) 214.

    Article  Google Scholar 

  12. Barmouz M, Asadi P, Givi M K B, and Taherishargh M, Mater Sci Eng A 528 (2011) 1740.

    Article  Google Scholar 

  13. Azizieh M, Goudarzi K, Pourmansouri R, Kafashan H, Balak Z, and Kim H S, Trans Indian Inst Met 71 (2018) 483.

    Article  Google Scholar 

  14. Bauri R, Yadav D, Kumar C N S, and Balaji B, Mater Sci Eng A 620 (2015) 67.

    Article  Google Scholar 

  15. Shafiei-Zarghani A, Kashani-Bozorg S F, and Zarei-Hanzaki A, Mater Sci Eng A 500 (2009) 84.

    Article  Google Scholar 

  16. Shojaeefard M H, Akbari M, Khalkhali A, and Asadi P, Mater Design Appl 232 (2016) 637.

    Google Scholar 

  17. Zeidabadi S R H, and Daneshmanesh H, Mater Sci Eng A 702 (2017) 189.

    Article  Google Scholar 

  18. Kishan V, Devaraju A, and Lakshmi K P, Def Technol 13 (2017) 16.

    Article  Google Scholar 

  19. Hashemi S H, and Ashrafi A, Trans IMF 96 (2018) 52.

    Article  Google Scholar 

  20. Shourgeshty M, Aliofkhazraei M, and Karimzadeh A, Surf Eng (2018) 10.1080/02670844.2018.1432172.

    Google Scholar 

  21. Tao X P, Zhang S, Wu C L, Zhang C H, Chen J, and Abdullah A O, Surf Eng 34 (2017) 316.

    Article  Google Scholar 

  22. Abdollahi S H, Karimzadeh F, and Enayati M H, J Alloys Compd 623 (2015) 335.

    Article  Google Scholar 

  23. Selvakumar S, Dinaharan I, Palanivel R, and Babu B G, Mater Charact 125 (2017) 317.

    Article  Google Scholar 

  24. Patel S K, Kuriachen B, Kumar N, and Nateriya R, Ceram Int 44 (2018) 6432.

    Google Scholar 

  25. Kumar N, Shukla A, Kumar N, and Choudhary R N P, Ceram Int 45 (2019) 831.

    Google Scholar 

  26. Singh V P, Patel S K, Kumar N, and Kuriachen B, J Sci Technol Weld Join (2019). 10.1080/13621718.2019.1567031.

    Google Scholar 

  27. Kumar N, Shukla A, Kumar N, Choudhary R N P, and Kumar A, RSC Adv 8 (2018) 36950.

    Google Scholar 

  28. Kumar N, Shukla A, and Choudhary R N P, Mater Int, 28 (2018) 314.

    Google Scholar 

  29. Yuvaraj N, Aravindan S, and Vipin Trans Indian Inst Met 70 (2017) 1111.

    Article  Google Scholar 

  30. Huang Y, Wang T, Guo W, Wan L, and Lv S, Mater Design 59 (2014) 274.

    Article  Google Scholar 

  31. Jain V K S, Muhammed P M, Muthukumaran S, and Babu S P K, Trans Indian Inst Met 71 (2018) 1519.

    Article  Google Scholar 

  32. Navazani M, and Dehghani K, J Mater Process Technol 229 (2016) 439.

    Article  Google Scholar 

  33. Eskandari H, and Taheri R, Procedia Mater Sci 11 (2015) 503.

    Article  Google Scholar 

  34. Ahmadifard S, Kazemi S, and Heidarpou A, Mater Design Appl 232 (2018) 287.

    Google Scholar 

  35. Janbozorgi M, Shamanian M, Sadeghian M, and Sepehrinia P, Tran. Nonferrous Met Soc China 27 (2017) 298.

    Article  Google Scholar 

  36. Gangil N, Maheshwari S, and Siddiquee A N, MaterManuf Process 33 (2018) 805.

    Article  Google Scholar 

  37. Akbari M, Shojaeefard M H, Asadi P, and Khalkhali A, Mater Design Appl (2017). 10.1177/1464420717702413.

    Google Scholar 

  38. Bhat U K, Udupa R K, Prakrathi S, and Huilgol P, Trans Indian Inst Met 69 (2016) 623.

    Article  Google Scholar 

  39. Huan H S, Shuai Y, and Duo J, Trans Indian Inst Met 71 (2018) 985.

    Article  Google Scholar 

  40. Rathee S, Maheshwari S, Siddiquee A N, and Srivastava M, Trans Indian Inst Met 70 (2017) 809.

    Article  Google Scholar 

  41. Ge W, Lin F, and Guo C, Mater Manuf Process 33 (2018) 1708.

    Article  Google Scholar 

  42. Barenji R V, Khojastehnezhad V M, Pourasl H H, and Rabiezadeh A, J Compos Mater 50 (2016) 1457.

    Article  Google Scholar 

  43. Ramnath V, Elanchezhian C, Annamalai R M, Aravind S, Atreya T S A, Vignesh V, and Subramanian C, Rev Adv Mater Sci 38 (2014) 55.

    Google Scholar 

  44. Zhang W, Sun D, Han L, and Liu D, Mater Design 57 (2014) 186.

    Article  Google Scholar 

  45. Reddy G M, and Rao K S, Trans Indian Inst Met 63 (2010) 793.

    Article  Google Scholar 

  46. Alaneme K K, and Bodunrin M O, J Miner Mater Charact Eng 10 (2011) 1153.

    Google Scholar 

  47. Nelaturu P, Jana S, Mishra R S, Grant G, and Carlson B E, Mater Sci Eng A 716 (2018) 165.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from National Institute of Technology, Mizoram. The authors also thank the characterization facility at laboratory department of MSME, Maulana Azad National Institute of Technology, Bhopal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil Kuriachen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.K., Singh, V.P. & Kuriachen, B. Microstructural, Tribological and Mechanical Properties Evolution of ZrSiO4/A4047 Surface Composite Fabricated through Friction Stir Processing. Trans Indian Inst Met 72, 1765–1774 (2019). https://doi.org/10.1007/s12666-019-01647-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01647-7

Keywords

Navigation