Skip to main content
Log in

Thermomechanical Phenomenon: A Non-destructive Evaluation Perspective

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

When subjected to continuous tensile loads, a material cools in the elastic regime and heats up in the plastic regime. Temperature changes are also observed when metals are subjected to cyclic stresses of amplitude below the yield strength. The insights into the use of thermomechanical phenomenon as a NDE technique are presented here based on experimental and computational evidence. Infrared thermal camera has been used to monitor the temperature changes in the materials. Measured temperature changes for tensile load on a material subjected to different levels of plastic deformation and for cyclic load on material are presented. Existing theoretical basis to explain the thermomechanical response is discussed in terms of (a) thermoelastic effect for the elastic regime in tensile load, (b) Taylor–Quinney coefficient for the plastic regime in tensile load, and (c) phenomenological models for the cyclic load. For the case of monotonic tensile loading, the extent of initial plastic deformation of a material is experimentally correlated with the observed decrease in temperature in the elastic regime. For the case of cyclic loading leading to stresses below the yield strength, the Kelvin–Voigt model has been found to be sufficient to explain the temperature changes. Amount of plastic deformation accumulated in the material can be deduced based on the decrease in temperature during tensile loading. Closeness between the parameters of Kelvin–Voigt model and that of the grain make this model suitable for understanding the thermomechanical response of polycrystalline materials subjected to stresses below the yield strength. To fully explain the thermoplastic effect beyond the Taylor–Quinney coefficient, a phenomenological model that accounts for the grain resizing, along with rotation and sliding, during the plastic deformation needs to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. NDT resource. Available from: https://www.asnt.org/MinorSiteSections/AboutASNT/Intro-to-NDT [Accessed: 2018-01-07].

  2. Schmerr Jr L, Fundamentals of Ultrasonic Nondestructive EvaluationA Modeling Approach, 2nd ed, Springer, AG Switzerland (2016), p 765.

    Book  Google Scholar 

  3. Maldague X, Theory and practice of infrared technology for nondestructive testing, 1st ed, Wiley, New York (2001), p 684.

    Google Scholar 

  4. Liaw P, Wang H, Jiang L, Yang B, Huang J, Kuo R, and Huang J, Scr Mater 42 (2000) 389.

    Article  CAS  Google Scholar 

  5. Pandey K and Chand S, Int J Pres Ves Pip 80 (2003) 673.

    Article  Google Scholar 

  6. Risitano A, and Risitano G, J Theor Appl Fract Mech 54 (2010) 82.

    Article  CAS  Google Scholar 

  7. Pieczyska E, J Theor Appl Fract Mech 37 (1999) 349.

    Google Scholar 

  8. Rusinek A, and Klepaczko J, Mater Des 30 (2009) 35.

    Article  CAS  Google Scholar 

  9. Knysh P, and Korkolis Y, Mech Mater 86 (2015) 71.

    Article  Google Scholar 

  10. Patil P, Thiyagarajan K, Prakash R, Balasubramaniam K, Int J Adv Manuf Technol (2009). https://doi.org/10.1007/s00170-008-1870-1.

  11. Saai A, Louche H, Tabourot L, and Chang H, Mech Mater 42 (2010) 275.

    Article  Google Scholar 

  12. Rittel D, Kidane A A, Alkhader M, Venkert A, Landau P, and Ravichandran G, Acta Mater 60 (2012) 3719.

    Article  CAS  Google Scholar 

  13. Heller M, Williams J, Dunn S, and Jones R, Compos Struct 11 (1989) 309.

    Article  Google Scholar 

  14. Panoskaltsis V, Bahuguna S, and Soldatos D, Int J NonLinear Mech 39 (2004) 709.

    Article  Google Scholar 

  15. Arruda E, Boyce M, and Jayachandran R, Mech Mater 19 (1995) 193.

    Article  Google Scholar 

  16. Patil P, Fatigue Damage Characterization in a Stainless Steel Using Infrared Thermography, M. Tech Thesis, Indian Institute of Technology Madras, India (2010).

  17. Thiyagarajan K, Application of Infrared Thermographic Technique to Plastic Deformation Studies, Ph D Thesis, Indian Institute of Technology Madras, India (2010).

  18. Thyiagarajan K, Prakash R, and Balasubramaniam K, in Proceedings of the 11th International Conference on Quantitative InfraRed Thermography QIRT-2012-253 (2012) June, Naples, Italy.

  19. Lee H, Chen J, and Wang J, J Mater Sci 28 (1993) 5500.

    Article  CAS  Google Scholar 

  20. Boulanger T, Chrysochoos A, Mabru C, and Galtier A, Int J Fatigue 26 (2004) 221.

    Article  CAS  Google Scholar 

  21. Meneghetti G, Int J Fatigue 29 (2007) 81.

    Article  CAS  Google Scholar 

  22. Mareau C, Favier V, Weber B, and Galtier A, Int J Fatigue 31 (2009) 1407.

    Article  CAS  Google Scholar 

  23. Ke T, Phys Rev 71 (1947) 533.

    Article  CAS  Google Scholar 

  24. Herring C, J Appl Phys 21 (1950) 437.

    Article  Google Scholar 

  25. Chindam C, Chitti Venkata K, Balasubramaniam K, and Prakash R V, Mater Sci Eng A 560 (2013) 54.

    Article  CAS  Google Scholar 

  26. Norton R L, Machine Design: An integrated approach, Pearson Education Inc, London (2000), p 1078.

    Google Scholar 

  27. Luong M, Mech Mater 28 (1998) 155.

    Article  Google Scholar 

  28. Anderson T, Fracture Mechanics: Fundamentals and Applications, 3rd ed, CRC Press, Boca Raton (2005), p 622.

    Book  Google Scholar 

  29. Greene R, Patterson E, and Rowlands R, in Handbook of Experimental Solid Mechanics, (ed) Sharpe W, Springer, New York (2008) p 743.

    Chapter  Google Scholar 

  30. Thomson W, Trans R Soc Edinb Earth 20 (1853) 261.

    Article  Google Scholar 

  31. Lord H and Shulman Y, J Mech Phys Solids 15 (1967) 299.

    Article  Google Scholar 

  32. Wong A, Jones R, and Sparrow J, J Phys Chem Solids 48 (1987) 749.

    Article  Google Scholar 

  33. Boley B, and Weiner J, Theory of Thermal Stresses, Wiley, London (1962), p 608.

    Google Scholar 

  34. Lubarda V, Int J Solids Struct 22 (1986) 1517.

    Article  Google Scholar 

  35. Schreyer H, and Maudlin P, Philos Trans R Soc A 363 (2005) 2517.

    Article  CAS  Google Scholar 

  36. Zehnder A, Mech Res Commun 18 (1991) 23.

    Article  Google Scholar 

  37. Taylor G, and Quinney H, Proc R Soc A 143 (1934) 307.

    Article  Google Scholar 

  38. Hodowany J, Ravichandran G, Rosakis A, and Rosakis P, Exp Mech 40 (2000) 113.

    Article  CAS  Google Scholar 

  39. Zaera R, Rodríguez-Martínez J, and Rittel D, Int J Plast 40 (2013) 185.

    Article  CAS  Google Scholar 

  40. Oliferuk W, Swiatnicki W, and Grabski M, Mater Sci Eng A 197 (1995) 49.

    Article  Google Scholar 

  41. Dumoulin S, Louche H, Hopperstad O, and Børvik T, Eur J Mech A-Solids 29 (2010) 461.

    Article  Google Scholar 

  42. ASTM standards. Available from http://www.trl.com/astm_e8_tensile_testing_of_metals/ [Accessed 2018-01-14].

  43. Carslaw H, and Jaeger J, Conduction of Heat in Solids, Clarendon Press, Oxford (1947), p 540.

    Google Scholar 

Download references

Acknowledgements

We thank Pravin Patil and Dr. Kathirvel Thiyagarjan for their contributions in major experimental aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chandraprakash.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandraprakash, C., Krishnamurthy, C.V. & Balasubramaniam, K. Thermomechanical Phenomenon: A Non-destructive Evaluation Perspective. Trans Indian Inst Met 72, 2905–2915 (2019). https://doi.org/10.1007/s12666-019-01656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01656-6

Keywords

Navigation