Skip to main content
Log in

Dissimilar Welding of Maraging Steel (250) and 13-8 Mo Stainless Steel by GTCAW, LBW and EBW Processes

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The frequently used aerospace materials, i.e., ultra-high-strength maraging steel (250) and corrosion-resistant 13-8 Mo stainless steel in the solution-annealed and cold-worked condition, have been joined by three fusion welding processes, namely interpulse TIG welding, and high energy density fusion processes like electron beam welding (EBW) and laser beam welding (LBW). The interpulse TIG welding process was carried out by using W2 grade maraging steel filler wire. The dissimilar joints were welded by EBW and LBW processes without any filler wire. All the dissimilar welded joints were characterized by microstructural observations and validated by mechanical properties in the as-welded as well as precipitation-hardened conditions after welding. The weld microstructures and microhardness profiles were correlated to the tensile strength of weld. Electron beam welded joint with precipitation hardening after welding, i.e., soaking at 510 °C and subsequent air cooling, demonstrated the superior mechanical properties among all the welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Norrish J, Advances Welding Processes: Technologies and Process Control, Woodhead Publishing Limited, Cambridge (2006), p 85.

    Book  Google Scholar 

  2. Tariq F, Baloch R A, and Naz B A N, J Mater Eng Perform 19 (2010) 64.

    Google Scholar 

  3. Nagarajan KV, in Proceedings of Symposium Steels for Engineering Industries-Trends in Weldability, Indian Institute of Metals, Tiruchirapalli (1998), p 43.

    Google Scholar 

  4. VBC report; http://vbcie.com

  5. Lee Y J, Wu S C, Chang J L, Chou C P, and Lee I K, Sci Tech Weld Join 13 (2008) 462.

    Article  CAS  Google Scholar 

  6. Chen X, Li J, Li Z, and Liu F, Steel Res 65 (1994) 557.

    Article  Google Scholar 

  7. Kaidanov AA, Electron Beam Welding and Related Technologies, 2nd Rev. ed., Kiev: Ekotekhnologiya (2004).

  8. Yu M, Meng F Y, and An J, Lasers Eng 20 (2015) 103.

    CAS  Google Scholar 

  9. Meng F, Liu H, Gao X, Wang Y, Wen Z, Lu Y, and An J, J Mater Design Appl 277 (2013) 16.

    Google Scholar 

  10. Liu H, Gao X, Wang Y, and An J, J Mech Eng 48 (2012) 69.

    Article  Google Scholar 

  11. Tewari R, Mazumder S, Batra I S, Dey G K, and Banerjee S, Acta mater 48 (2000) 1187.

    Article  CAS  Google Scholar 

  12. Servant C, and Bouzid N, Acta Metall 36 (1988) 2771.

    Article  CAS  Google Scholar 

  13. Vasudevan V K, Kim S J, and Wayman C M, Metall Trans 21A (1990) 2655.

    Article  CAS  Google Scholar 

  14. Lecomte J B, Servant C, and Cizeron G, J Mater Sci 20 (1985) 3339.

    Article  CAS  Google Scholar 

  15. Sha W, Cerezo A, and Smith G D W, Metall Trans 24A (1993) 1221.

    Article  CAS  Google Scholar 

  16. Sastry K Y, Narayanan R, Shamantha C R, Sundaresan S, Seshadri S K, Radhakrishnan V M, Iyer K J L and Sundararajan S, Mater Sci Technol 19 (2003) 375.

    Article  CAS  Google Scholar 

  17. Canonico D A, WELD J 43 (1964) 433S.

    CAS  Google Scholar 

  18. Adams Jr C M, and Travis R E, Weld J 43 (1964) 193S.

    Google Scholar 

  19. Salmon Cox P H, Birkle A J, Reisdorf B G, and Pellisier G E, ASM Trans Q 60 (1967) 125.

    Google Scholar 

  20. Rohrbach K, and Schmidt M, Metals Handbook, Vol 1, 10th ed., ASM, Materials Park, OH (1990), p 793.

    Google Scholar 

  21. Lippold J C, and Kotechi D J, Welding Metallurgy and Weldability of Stainless Steels, John Wiley & Sons Inc Publishing, Hoboken, NJ, USA (2005) p 264.

    Google Scholar 

  22. Hochanadel P W, Robino C V, Edwards G R, and Cieslak M J, Metall Mater Trans A 25A (1994) 789.

    Article  Google Scholar 

  23. Seetharaman V, Sundararaman M, and Krishnan R, Mater Sci Eng 47 (1981) 1.

    Article  CAS  Google Scholar 

  24. Gallo F C, and de Almeida L H, Acta Microscopica 12 (2003) 901.

    Google Scholar 

  25. De Almeida L H, Magrani S J G, Ribeiro A F, and LeMay I, Microstruct Charact 22 (1995) 441.

    Google Scholar 

  26. Huang Z, Abad M D, Ramsey J K, Rebelode Figueiredo M, Kaoumi D, Li N, Asta M, Gronbech Jensen N, and Hosemann P, Mater Sci Eng A 651 (2016) 574.

    Article  CAS  Google Scholar 

  27. Schnitzer R, Radis R, Nöhrer M, Schober M, Hochfellner R, Zinner S, Povoden-Karadeniz E, Kozeschnik E, and Leitner H, Mater Chem Phys 122 (2010) 138.

    Article  CAS  Google Scholar 

  28. Leitner H, Schnitzer R, Schober M, and Zinner S, Acta Mater 59 (2011) 5012.

    Article  CAS  Google Scholar 

  29. Mittra J, Dey G K, Seb D, Patra A K, Mazumder S, and De P K, Scr Mater 51 (2004) 349.

    Article  CAS  Google Scholar 

  30. Li X, Zhang J, Chen J, Shen S, Yang G, Wang T, and Song X, Mater Sci Eng A 651 (2016) 474.

    Article  Google Scholar 

  31. Tsay L, Chen H, Chiang M, and Chen C, Corros Sci 49 (2007) 2461.

    Article  CAS  Google Scholar 

  32. Lang F H, and Kenyon N, Welding of maraging steels, WRC Bulletin 159, New York (1971) p 2.

  33. Peters D T, Tans ASM Quart 61 (1968) 62.

    CAS  Google Scholar 

  34. Venkata Ramana P, and Madhusudhan Reddy G, Sci Technol Weld Join 13 (2008) 388.

  35. Li K, Shan J, Wang C, and Tian Z, Mater Sci Eng A 663 (2016) 157.

    Article  CAS  Google Scholar 

  36. Murthy C V S, Gopalkrishna A, and Reddy G M, Defence Technology 15 (2019) 111.

Download references

Acknowledgements

The authors are grateful for financial support extended by Defence Research and Development Organization (DRDO). The authors would like to sincerely thank Director, Defence Research and Development Laboratory (DRDL), Hyderabad, for his continued encouragement and permission to publish this work. The authors are also grateful to Materials Development Division of DRDL for their valuable support in characterization of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. S. Murthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murthy, C.V.S., Krishna, A.G. & Reddy, G.M. Dissimilar Welding of Maraging Steel (250) and 13-8 Mo Stainless Steel by GTCAW, LBW and EBW Processes. Trans Indian Inst Met 72, 2433–2441 (2019). https://doi.org/10.1007/s12666-019-01695-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01695-z

Keywords

Navigation