Skip to main content
Log in

Characterization, Prediction, and Optimization of Dry Sliding Wear Behaviour of Al6061/WC Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This investigation deals with an experimental analysis done on dry sliding wear behaviour of aluminium matrix composites reinforced with WC (tungsten carbide) particles. The composites were processed through powder metallurgy (P/M) technique with the addition of various fractions of WC particles. Results of scanning electron microscope (SEM) examinations and XRD analysis showed better dispersion of the reinforced particles and good matrix–reinforcement interface integrity. The results of dry sliding wear tests conducted on composite samples were analysed for varied conditions of WC volume fraction and sliding distance. The wear properties of composites were significantly affected by the variation of the WC volume percentage (5–25%). Smother wear tracks and closely spaced grooves on the composite pin worn surfaces were  found for higher volume fraction WC particles. The postulated regression models for prediction of wear behaviour approximate their experimental values with an estimated error from 1.97 to 6.56%. The derived optimal wear properties to improve the sliding wear performance of the composites through a novel hybrid (GRA integrated TLBO) multi-response optimization approach are in a closer correlation with the experimentally measured values. Also, wear performance predicted values through hybrid multi-response optimization are closer to their validation experimental results compared with the predicted values through TLBO and GRA approaches. The derived optimal set of wear properties are 1.921 mm3/m wear rate and 0.292 coefficient of friction at 15 vol% of WC, 10 N applied load, 775 m sliding distance, and 1 m/s sliding velocity. The surfaces of the composite samples tested at the derived set of optimal wear behavioural parameters were also examined through SEM and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lee H S, Yeo J S, Hong S H, Yoon D J, and Na K H, J Mater Process Technol 113 (2001) 202. https://doi.org/10.1016/s0924-0136(01)00680-x.

    Article  CAS  Google Scholar 

  2. Kaczmar J W, Pietrzak K, and Włosiński W, J Mater Process Technol 106 (2000) 58. https://doi.org/10.1016/s0924-0136(00)00639-7.

    Article  Google Scholar 

  3. Canakci A, Ozsahin S, and Varol T, Arab J Sci Eng 39 (2014) 6351. https://doi.org/10.1007/s13369-014-1157-9.

    Article  CAS  Google Scholar 

  4. Dasgupta R, ISRN Metall 2012 (2012) 1. https://doi.org/10.5402/2012/594573.

    Article  CAS  Google Scholar 

  5. Srivatsan T S, Ibrahim I A, Mohamed F A, and Lavernia E J, J Mater Sci 26 (1991) 5965. https://doi.org/10.1007/bf01113872.

    Article  CAS  Google Scholar 

  6. Jiang Q C, Wang H Y, Ma B X, Wang Y, and Zhao F, J Alloys Compd 386 (2005) 177. https://doi.org/10.1016/j.jallcom.2004.06.015.

    Article  CAS  Google Scholar 

  7. Slipenyuk A, Kuprin V, Milman Y, Goncharuk V, and Eckert J, Acta Mater 54 (2006) 157. https://doi.org/10.1016/j.actamat.2005.08.036.

    Article  CAS  Google Scholar 

  8. Wang Z, Song M, Sun C, and He Y, Mater Sci Eng A 528 (2011) 1131. https://doi.org/10.1016/j.msea.2010.11.028.

    Article  CAS  Google Scholar 

  9. Zhao N, Nash P, and Yang X, J Mater Process Technol 170 ( 2005) 586. https://doi.org/10.1016/j.jmatprotec.2005.06.037.

    Article  CAS  Google Scholar 

  10. Slipenyuk A, Kuprin V, Milman Y, Spowart J E, and Miracle D B, Mater Sci Eng A 381 (2004) 165. https://doi.org/10.1016/j.msea.2004.04.040.

    Article  CAS  Google Scholar 

  11. Song M, Trans Nonferrous Met Soc China (English Ed) 19 (2009) 1400. https://doi.org/10.1016/s1003-6326(09)60040-6.

  12. Wang H, Zhang R, Hu X, Wang C A, and Huang Y, J Mater Process Technol 197 (2008) 43. https://doi.org/10.1016/j.jmatprotec.2007.06.002.

    Article  CAS  Google Scholar 

  13. Shim Y, Levine L E, and Fields R J, Phys A Stat Mech Appl 348 (2005) 1–15. https://doi.org/10.1016/j.physa.2004.09.045.

    Article  CAS  Google Scholar 

  14. Wasekar N P, Bathini L, Ramakrishna L, Rao D S, and Padmanabham G, Appl Surf Sci 527 (2020) 146896. https://doi.org/10.1016/j.apsusc.2020.146896.

  15. Huei-Long L, Wun-Hwa L, and Lap-Ip Chan S, Wear 159 (1992) 223. https://doi.org/10.1016/0043-1648(92)90305-r.

  16. Ganesh I and Advanced I, Wear 245 (2016) 22. https://doi.org/10.1016/s0043-1648(00)00463-4.

  17. Yu S Y, Ishii H, Tohgo K, Cho Y T, and Diao D, Wear 213 (1997) 21. https://doi.org/10.1016/s0043-1648(97)00207-x.

    Article  CAS  Google Scholar 

  18. Shorowordi K M, Haseeb A S M A, Celis J P, Wear 256 (2004) 1176. https://doi.org/10.1016/j.wear.2003.08.002.

    Article  CAS  Google Scholar 

  19. Rahimian M, Parvin N, and Ehsani N, Mater Sci Eng A 527 (2010) 1031. https://doi.org/10.1016/j.msea.2009.09.034.

    Article  CAS  Google Scholar 

  20. Sindhu D, Thakur L, and Chandna P, Silicon 11 (2019) 2033. https://doi.org/10.1007/s12633-018-0019-6.

    Article  CAS  Google Scholar 

  21. Thankachan T, Prakash KS, Malini R, Ramu S, Sundararaj P, Rajandran S, Rammasamy D, Jothi S, Appl Surf Sci 472 (2019) 22. https://doi.org/10.1016/j.apsusc.2018.06.117.

    Article  CAS  Google Scholar 

  22. Li N, Chen Y J, and Kong D D, Adv Manuf 7 (2019) 142. https://doi.org/10.1007/s40436-019-00251-8.

    Article  CAS  Google Scholar 

  23. Hanif M, Ahmad W, Hussain S, Jahanzaib M, and Shah A H, Int J Adv Manuf Technol 101 (2019) 1255. https://doi.org/10.1007/s00170-018-3019-1.

    Article  Google Scholar 

  24. Ajith Arul Daniel S, Pugazhenthi R, Kumar R, and Vijayananth S, Def Technol 15 (2019) 545. https://doi.org/10.1016/j.dt.2019.01.001.

  25. Ju-Long D, Syst Control Lett 1 (1982) 288. https://doi.org/10.1016/s0167-6911(82)80025-x.

    Article  Google Scholar 

  26. Wu CC and Chang N B, Eur J Oper Res 145 (2003) 175. https://doi.org/10.1016/s0377-2217(02)00174-1.

    Article  Google Scholar 

  27. Lin J and Lin C, Int J Mach Tools Manuf 42 (2002) 237. https://doi.org/10.1016/s0890-6955(01)00107-9.

    Article  Google Scholar 

  28. Tosun N and Pihtili H, Int J Adv Manuf Technol 46 (2010) 509. https://doi.org/10.1007/s00170-009-2118-4.

    Article  Google Scholar 

  29. Rao R V, Savsani V J, and Vakharia D P, Comput Des 43 (2011) 303. https://doi.org/10.1016/j.cad.2010.12.015.

    Article  Google Scholar 

  30. Dede T, KSCE J Civ Eng 18 (2014) 1759. https://doi.org/10.1007/s12205-014-0553-8.

    Article  Google Scholar 

  31. Taylor P, Rao R V, Kalyankar V D, Mater Manuf Process 27 (2012) 37. https://doi.org/10.1080/10426914.2011.602792.

  32. Hamzadayi A and Yelkenci S, Inf Sci 276 (2014) 204. https://doi.org/10.1016/j.ins.2014.02.056.

  33. Roa-Sepulveda C A and Pavez-Lazo B J, Int J Electr Power Energy Syst 25 (2003) 47. https://doi.org/10.1016/s0142-0615(02)00020-0.

    Article  Google Scholar 

  34. Sharma N, Khanna R, Singh G, and Kumar V, Part Sci Technol 6351 (2016) 1. https://doi.org/10.1080/02726351.2016.1196276.

    Article  CAS  Google Scholar 

  35. Yan W, Lu S, and Yu D C, IEEE Trans Power Syst 19 (2004) 913.

  36. Cai H R, Chung C Y, and Wong K P, IEEE Trans Power Syst 23 (2008) 719.

  37. Shi Y and Eberhart R C, (1945) 1945.

  38. Taylor P, Roy P K, and Mandal D, Electr Power Compon Syst 40 (2011) 37. https://doi.org/10.1080/15325008.2011.629337.

  39. Roy A B P K, IET Gen Transm Distrib 6 (2012) 751. https://doi.org/10.1049/iet-gtd.2011.0593.

  40. Dai C, Chen W, Zhu Y, and Zhang X, IEEE Trans Power Syst 24 (2009) 1218.

  41. Sciencedirect S and All E B V, Appl Soft Comput 12 (2012) 1477. https://doi.org/10.1016/j.asoc.2012.01.006.

  42. Mandal B and Roy P K, Int J Electr Power Energy Syst 53 (2013) 123. https://doi.org/10.1016/j.ijepes.2013.04.011.

    Article  Google Scholar 

  43. Wang Z, Lu R, Chen D, and Zou F, IEEE Trans Power Syst 46 (2016) 1.

  44. Raju S, Gunji R, Rao S, Gfrg G R G A, and Coconut A, J Inst Eng Ser C 100 (2019) 13. https://doi.org/10.1007/s40032-017-0388-4.

    Article  Google Scholar 

  45. Kumar A, Rajesh M, and Srivastava K, J Inst Eng Ser C (2016). https://doi.org/10.1007/s40032-016-0284-3.

    Article  Google Scholar 

  46. Basavarajappa S, Chandramohan G, Mukund K, Ashwin M, and Prabu M, J Mater Eng Perform 15 (2006) 668. https://doi.org/10.1361/105994906x150803.

    Article  CAS  Google Scholar 

  47. Yigezu B S, Mahapatra M M, and Jha P K, Mater Des 50 (2013) 277. https://doi.org/10.1016/j.matdes.2013.02.042.

    Article  CAS  Google Scholar 

  48. Ye H, J Mater Eng Perform 12 (2003) 288. https://doi.org/10.1361/105994903770343132.

    Article  CAS  Google Scholar 

  49. Tyagi R, Wear 259 (2005) 569. https://doi.org/10.1016/j.wear.2005.01.051.

    Article  CAS  Google Scholar 

  50. Douglas C, Montgomery: Design and Analysis of Experiments. Part 1, Wiley, Hoboken (2001).

  51. Mishra S and Yadava V, Opt Laser Technol 48 (2013) 461. https://doi.org/10.1016/j.optlastec.2012.10.035.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thella Babu Rao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, T.B., Ponugoti, G. Characterization, Prediction, and Optimization of Dry Sliding Wear Behaviour of Al6061/WC Composites. Trans Indian Inst Met 74, 159–178 (2021). https://doi.org/10.1007/s12666-020-02107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02107-3

Keywords

Navigation