Skip to main content
Log in

Sustainable Hard Turning of High Chromium AISI D2 Tool Steel Using CBN and Ceramic Inserts

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this experimental study, the effects of cutting parameters and insert types on the surface roughness and cutting force components were investigated during hard turning of high chromium AISI D2 tool steel under dry cutting conditions. Three different cutting speeds, feed rates, and cutting depths were chosen as machining parameters, while cubic boron nitride and ceramic inserts with two different nose radii were selected as tool material. The design of the experiment was carried out based on the Taguchi L36 mixed orthogonal array. The response surface method was used to establish the relation between input and output parameters. Analysis of variance was performed to show the most significant parameters on the response. In addition, an artificial neural network was implemented for output modeling. The results revealed that surface roughness was mainly affected by the feed rate with almost 90.53%. Following feed rate, the nose radius was also significant on the surface roughness. Based on the results, the cubic boron nitride insert exhibited better performance than the ceramic insert in terms of minimum surface roughness. The cutting force components were mostly affected by the insert type. Cubic boron nitride insert caused greater forces during machining compared to the ceramic insert. The results revealed that the artificial neural network and response surface methodology exhibited very good accuracy with experimental data. However, the artificial neural network shows better accuracy and can predict the responses with 99.51% accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bartarya G, and Choudhury S, Int J Mach Tools Manuf 53 (2012) 1.

    Article  Google Scholar 

  2. Gaitonde V, Karnik S, Figueira L, and Davim J P, Mater Manuf Processes 24 (2009) 1373.

    Article  Google Scholar 

  3. Patel V D, and Gandhi A H, Measurement 138 (2019) 34.

    Article  Google Scholar 

  4. Choudhary R, Kumar H, and Singh S, J Mater Eng Perform 22 (2013) 3665.

    Article  CAS  Google Scholar 

  5. Kumar R, Sahoo A K, Mishra P C, and Das R K, Adv Manuf 6 (2018) 155.

    Article  CAS  Google Scholar 

  6. Kahrobaee S, and Kashefi M, J Mater Eng Perform 24 (2015) 1192.

    Article  CAS  Google Scholar 

  7. Şahinoğlu A, and Rafighi M, Mater Test 62 (2020) 85.

    Article  Google Scholar 

  8. Özdemir M, Mechanics 25 (2019) 397.

    Article  Google Scholar 

  9. Umer U, J Mater Eng Perform 21 (2012) 1857.

    Article  CAS  Google Scholar 

  10. Salimi Asl A, Erdem A, and Rafighi M, Sci Iran 24 (2017) 2864.

    Google Scholar 

  11. Özdemir M, Kaya M T, and Akyildiz H K, Mechanics 26 (2020) 231.

    Article  Google Scholar 

  12. Kalyon A, Günay M, and Özyürek D, Adv. Manuf 6 (2018) 419.

    Article  CAS  Google Scholar 

  13. Gaitonde V, Karnik S, and Davim J P, J Mater Eng Perform 18 (2009) 231.

    Article  CAS  Google Scholar 

  14. Şahinoğlu A, and Rafighi M, Arabian J Sci Eng 45 (2020) 765.

    Article  Google Scholar 

  15. Srithar A, Palanikumar K, and Durgaprasad B, Mater Today: Proc 16 (2019) 1061.

    Article  CAS  Google Scholar 

  16. Kumar R, Sahoo A K, Mishra P C, Panda A, Das R K, and Roy S, Mater Today: Proc 18 (2019) 2486.

    Article  CAS  Google Scholar 

  17. Özbek O., and Saruhan H, J Mater Res Technol 9 (2020) 2762.

    Article  Google Scholar 

  18. Davim J P, and Figueira L, Mater Des 28 (2007) 1186.

    Article  CAS  Google Scholar 

  19. Dosbaeva G, El Hakim M, Shalaby M, Krzanowski J, and Veldhuis S, Int J Refract Met Hard Mater 50 (2015) 1.

    Article  CAS  Google Scholar 

  20. Gabay T, Jakobs E, Ben-Jacob E, and Hanein Y, Physica A, 350 (2005) 611.

    Article  CAS  Google Scholar 

  21. Rao K V, Murthy B, and Rao N M, Measurement 51 (2014) 63.

    Article  Google Scholar 

  22. Cavaleri L, Chatzarakis G E, Di Trapani F, Douvika M G, Roinos K, Vaxevanidis N M, and Asteris P G, Adv Mater Res 6 (2017) 169.

    Google Scholar 

  23. Davim J P, Gaitonde V, and Karnik S, J Mater Process Technol 205 (2008) 16.

    Article  CAS  Google Scholar 

  24. Basheer A C, Dabade U A, Joshi S S, Bhanuprasad V, and Gadre V, J Mater Process Technol 197 (2008) 439.

    Article  CAS  Google Scholar 

  25. Karayel D, J Mater Process Technol 209 (2009) 3125.

    Article  Google Scholar 

  26. Munoz-Escalona P, and Maropoulos P G, J Mater Eng Perform 19 (2010) 185.

    Article  CAS  Google Scholar 

  27. Kara F, Karabatak M, Ayyıldız M, and Nas E, J Mater Res Technol 9 (2020) 969.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Rafighi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafighi, M., Özdemir, M., Al Shehabi, S. et al. Sustainable Hard Turning of High Chromium AISI D2 Tool Steel Using CBN and Ceramic Inserts. Trans Indian Inst Met 74, 1639–1653 (2021). https://doi.org/10.1007/s12666-021-02245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02245-2

Keywords

Navigation