Skip to main content
Log in

Burr Reduction in Drilling Titanium using Drills with Peripheral Slits

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Drilling of titanium alloy results in considerable burrs at the exit surface of a hole. The burrs deteriorate quality of hole surfaces and can cause misalignment during assembly. Therefore, burr minimization while drilling is necessary. In this study, innovative chamfered drills with slits have been developed to reduce the burr height and thrust forces. Dry drilling experiments were conducted using chamfered drills without slits and with slits (CWS) having four different point angles. Drilling performance was measured in terms of burr height, thrust forces, and chips morphology. A finite element method-based model was developed to simulate drilling of Ti6Al4V alloy using the drills without and with slits. The results show that the maximum burr height for CWS drills was reduced by 48.5% as compared to the conventional drills. The thrust forces were reduced by 5.5% and were in a fair agreement with the simulation results. For most of the cases, the simulated forces were within 10% of their experimental counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

CWOS:

Chamfered drill without slits

CWS:

Chamfered drill with slits

\( F_{{{\text{t}}\_{\text{wos}}}} \) :

Thrust force with chamfered drill without slits

\( F_{{{\text{t}}\_{\text{ws}}}} \) :

Thrust force with chamfered drill with slits

\( h_{{\_{\text{wos}}}} \) :

Burr height with chamfered drill without slits

\( h_{{\_{\text{ws}}}} \) :

Burr height with chamfered drill with slits

References

  1. Davim J P (Ed.) Machining of titanium alloys, Springer, Berlin, Heidelberg (2014) p 2.

    Google Scholar 

  2. Klocke F, Settineri L, Lung, Priarone P C and Arft M, Wear 302 (2013) 1136.

    Article  CAS  Google Scholar 

  3. Abdelhafeez A M, Soo S L, Aspinwall D K, Dowson A and Arnold D, Procedia CIRP 37 (2015) 230.

    Article  Google Scholar 

  4. Zhang P F, Churi N J, Pei Z J and Treadwell C, Mach Sci Technol, 12 (2008) 417.

    Article  CAS  Google Scholar 

  5. Yunming Z, Guicheng W and Lei W, IEEE Int Conf Intell Syst Des Eng Appl 2 (2010) 369.

    Google Scholar 

  6. Aurich J C, Dornfeld D, Arrazola P J, Franke V, Leitz L, and Min S, CIRP Ann 58 (2009) 519.

    Article  Google Scholar 

  7. Ko S L, Lee J K, J Mater Process Technol 113 (2001) 392.

    Article  Google Scholar 

  8. Manickam C and Parthipan N, Mater Today Proc (2019) (in Press) https://doi.org/10.1016/j.matpr.2019.07.589.

    Article  Google Scholar 

  9. Dornfeld D A, Strategies for preventing and minimizing burr formation, LMA Research Reports, University of California, Berkeley (2003).

  10. Kim J, Min S and Dornfeld D A, Int J Mach Tools ManufInt J Mach Tools Manuf, 41 (2001) 923.

    Article  Google Scholar 

  11. Dornfeld D A, Kim J S, Dechow H, Hewson J, Chen L J, CIRP Ann Manuf Technol, 48 (1999) 73.

    Article  Google Scholar 

  12. Joy N, Prakash S, Krishnamoorthy A and Antony A. Mater Today Proc (2019) (in Press). https://doi.org/10.1016/j.matpr.2019.05.458.

    Article  Google Scholar 

  13. Ko S L, Chang J E and Yang G E, J Mater Process Technol, 140 (2003) 237.

    Article  Google Scholar 

  14. Karnik S R and Gaitonde V N, Int J Adv Manuf Technol, 39 (2008) 439.

    Article  Google Scholar 

  15. Stein J M and Dornfeld D A, CIRP Ann, 46 (1997), 63.

    Article  Google Scholar 

  16. Kilickap E, Int J Adv Manuf Technol, 49 (2010) 911.

    Article  Google Scholar 

  17. Alonso U, Calamaz M, Girot F and Iriondo E, J Manuf Process, 39 (2019) 356.

    Article  Google Scholar 

  18. Mathew N T and Vijayaraghavan L, J Manuf Process, 24 (2016) 256.

    Article  Google Scholar 

  19. Patil R, Shinde S, Marla D and Joshi S, Int J Mechatron Manuf Syst, 9 (2016) 237.

    Google Scholar 

  20. Version A 6.13 Documentation (Abaqus), Abaqus user’s guide (2013).

  21. Johnson G R and Cook W H, in Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands: International Ballistics Committee (1983) p 541.

  22. Johnson G R and Cook W H, Eng Fract Mech 21 (1985) 31.

    Article  Google Scholar 

  23. Hillerborg A, Modeer M and Petersson P E, Cem Concr Res 6 (1976) 773.

    Article  Google Scholar 

  24. Li A Pang J Zhao J Zang J and Wang F, Int J Mech Sci123 (2017) 214.

    Article  Google Scholar 

  25. Brinksmeier E and Janssen R, CIRP Ann 51 (2002) 87.

    Article  Google Scholar 

  26. Yi S, Li G X, Ding S L, and Mo J, Key Eng Mater 730 (2017) 289.

    Article  Google Scholar 

Download references

Acknowledgement

Authors are thankful for the financial support provided by Aeronautics Research and Development Board, India (Project Number: 16ARDB002 (RD/0116-ARDB000-09-EXP.)) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhas S. Joshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

With the regression analysis, the obtained response surfaces models for the burr height using CWOS and CWS at four different drill point angle are given in Appendix (Eqs. 815).

$$ h_{{{\text{\_wos}}}} = 475.41 - \left( {4412.25*f} \right) + \left( {15943.75*f^{2} } \right)\quad {\text{for}}\;\theta _{1} = 120 $$
(8)
$$ h_{{{\text{\_wos}}}} = 1101.14 - \left( {8702.75*f} \right) + \left( {15943.75*f^{2} } \right)\quad {\text{for}}\;\theta _{2} = 130 $$
(9)
$$ h_{{{\text{\_wos}}}} = 1011.26 - \left( {9754.5*f} \right) + \left( {15943.75*f^{2} } \right)\quad {\text{for}}\;\theta _{3} = 140 $$
(10)
$$ h_{{{\text{\_wos}}}} = 509.65 - \left( {6396.16*f} \right) + \left( {15943.75*f^{2} } \right)\quad {\text{for}}\;\theta _{4} = 150 $$
(11)
$$ h_{{{\text{\_ws}}}} = 449.23 - \left( {4459.8*f} \right) + \left( {15955*f^{2} } \right)\quad {\text{for}}\;\theta _{1} = 120 $$
(12)
$$ h_{{{\text{\_ws}}}} = 952.16 - \left( {7582.55*f} \right) + \left( {15955*f^{2} } \right)\quad {\text{for}}\;\theta _{2} = 130 $$
(13)
$$ h_{{{\text{\_ws}}}} = 895.86 - \left( {8780.55*f} \right) + \left( {15955*f^{2} } \right)\quad {\text{for}}\;\theta _{3} = 140 $$
(14)
$$ h_{{{\text{\_ws}}}} = 435.90 - \left( {5622.55*f} \right) + \left( {15955*f^{2} } \right)\quad {\text{for}}\;\theta _{4} = 150 $$
(15)

where h_wos and h_ws represent the burr height for CWOS and CWS, respectively, and f denotes the feed.

With the regression analysis, the obtained response surfaces models for the thrust force using CWOS and CWS at four different drill point angle are given in Appendix (Eqs. 1623).

$$ F_{{{\text{t\_wos}}}} = 59.50 + \left( {4116.85*f} \right) - \left( {14297.5*f^{2} } \right)\quad {\text{for}}\;\theta _{1} = 120 $$
(16)
$$ F_{{{\text{t\_wos}}}} = 99.39 + \left( {3576.85*f} \right) - \left( {14297.5*f^{2} } \right)\quad {\text{for}}\;\theta _{2} = 130 $$
(17)
$$ F_{{{\text{t\_wos}}}} = 77.20 + \left( {4015.8*f} \right) - \left( {14297.5*f^{2} } \right)\quad {\text{for}}\;\theta _{3} = 140 $$
(18)
$$ F_{{{\text{t\_wos}}}} = 63.51 + \left( {4558.6*f} \right) - \left( {14297.5*f^{2} } \right)\quad {\text{for}}\;\theta _{4} = 150 $$
(19)
$$ F_{{{\text{t\_ws}}}} = 13.74 + \left( {4830.05*f} \right) - \left( {18117.5*f^{2} } \right)\quad {\text{for}}\;\theta _{1} = 120 $$
(20)
$$ F_{{{\text{t\_ws}}}} = 56.35 + \left( {4244.55*f} \right) - \left( {18117.5*f^{2} } \right)\quad {\text{for}}\;\theta _{2} = 130 $$
(21)
$$ F_{{{\text{t\_ws}}}} = 85.55 + \left( {4018.8*f} \right){\mkern 1mu} - \left( {18117.5*f^{2} } \right)\quad {\text{for}}\;\theta _{3} = 140 $$
(22)
$$ F_{{{\text{t\_ws}}}} = 29.29 + \left( {5072.3*f} \right){\mkern 1mu} - \left( {1817.5*f^{2} } \right)\quad {\text{for}}\;\theta _{4} = 150 $$
(23)

where \( F_{{{\text{t\_wos}}}} \) and \( F_{{{\text{t\_ws}}}} \) represent the thrust force for CWOS and CWS, respectively, and f denotes the feed (Tables 11, 12).

Table 11 ANOVA for the thrust force of chamfered drill without slits (CWOS)
Table 12 ANOVA for the thrust force of chamfered drill with slits (CWS)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajrani, K.K., Divse, V. & Joshi, S.S. Burr Reduction in Drilling Titanium using Drills with Peripheral Slits. Trans Indian Inst Met 74, 1155–1172 (2021). https://doi.org/10.1007/s12666-021-02271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02271-0

Keywords

Navigation