Skip to main content
Erschienen in: Energy Systems 4/2015

01.11.2015 | Original Paper

Enhancement of microgrid dynamic responses under fault conditions using artificial neural network for fast changes of photovoltaic radiation and FLC for wind turbine

verfasst von: Alireza Rezvani, Maziar Izadbakhsh, Majid Gandomkar

Erschienen in: Energy Systems | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microgrid is a low voltage electrical network with distributed generations, energy storage devices and controllable loads. This paper utilizes artificial neural network (ANN) to predict the optimum voltages in order to extract the maximum power and increment the efficiency of photovoltaic system. In this regard, the optimum voltages are achieved by the genetic algorithm (GA). Then these optimum values are used in ANN method. The results of ANN-GA is compared with the other methods that verified the proposed method with high accuracy which can track the maximum power point (MPP) under different insolation and temperature circumstances and also, meet the load demand with less fluctuation around the MPP.; also it can increase the convergence speed to achieve the MPP. As well as, the evaluation of fuzzy logic controller (FLC) in comparison with the PI controller in pitch angle of wind turbine (WT) is carried out. In order to control the output power of wind turbine, by implementing the wind speed and active power as inputs of FLC, it has faster responses, smoother power curves, less oscillation than aforementioned methods which lead to improve the dynamic responses of WT. The models are developed and applied in the Matlab/Simulink program.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rezvani, A., Gandomkar, M., Izadbakhsh, M., Ahmadi, A.: Environmental/economic scheduling of a micro-grid with renewable energy resources. J. Clean. Prod. 87, 216–226 (2015)CrossRef Rezvani, A., Gandomkar, M., Izadbakhsh, M., Ahmadi, A.: Environmental/economic scheduling of a micro-grid with renewable energy resources. J. Clean. Prod. 87, 216–226 (2015)CrossRef
2.
Zurück zum Zitat Izadbakhsh, M., Gandomkar, M., Rezvani, A., Ahmadi, A.: Short-term resource scheduling of a renewable energy based micro grid. Renew. Energy 75, 598–606 (2015)CrossRef Izadbakhsh, M., Gandomkar, M., Rezvani, A., Ahmadi, A.: Short-term resource scheduling of a renewable energy based micro grid. Renew. Energy 75, 598–606 (2015)CrossRef
3.
Zurück zum Zitat Maknouninejad, A., Lin, W., Harno, H.G., Qu, Z., Simaan, M.A.: Cooperative control for self-organizing microgrids and game strategies for optimal dispatch of distributed renewable generations. Energy Syst. 3(1), 23–60 (2012)CrossRef Maknouninejad, A., Lin, W., Harno, H.G., Qu, Z., Simaan, M.A.: Cooperative control for self-organizing microgrids and game strategies for optimal dispatch of distributed renewable generations. Energy Syst. 3(1), 23–60 (2012)CrossRef
4.
Zurück zum Zitat Salas, V., Olias, E., Barrado, A., Lazaro, A.: Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Mater. Solar Cells 90(11), 1555–1578 (2006)CrossRef Salas, V., Olias, E., Barrado, A., Lazaro, A.: Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Mater. Solar Cells 90(11), 1555–1578 (2006)CrossRef
5.
Zurück zum Zitat Okido, S., Takeda, A.: Economic and environmental analysis of photovoltaic energy systems via robust optimization. Energy Syst. 4(3), 239–266 (2013)CrossRef Okido, S., Takeda, A.: Economic and environmental analysis of photovoltaic energy systems via robust optimization. Energy Syst. 4(3), 239–266 (2013)CrossRef
6.
Zurück zum Zitat Papanikolaou, N., Christodoulou, C., Loupis, M.: Introducing an improved bidirectional charger concept for modern residential standalone PV systems. Energy Syst. 6(1), 21–41 (2013)CrossRef Papanikolaou, N., Christodoulou, C., Loupis, M.: Introducing an improved bidirectional charger concept for modern residential standalone PV systems. Energy Syst. 6(1), 21–41 (2013)CrossRef
7.
Zurück zum Zitat Liu, F.F., Duan, S., Liu, B., Kang, Y.: A variable step size INC MPPT method for PV systems. IEEE Trans. Ind. Electron. 55(7), 622–2628 (2008) Liu, F.F., Duan, S., Liu, B., Kang, Y.: A variable step size INC MPPT method for PV systems. IEEE Trans. Ind. Electron. 55(7), 622–2628 (2008)
8.
Zurück zum Zitat Shafy, A., Nafeh, A., Fahmy, F.H., Abou El-Zahab, E.M.: Maximum-power operation of a stand-alone PV system using fuzzy logic control. Int. J. Numer. Model. Electron. Netw. Devices Fields 15(4), 385–398 (2002)MATHCrossRef Shafy, A., Nafeh, A., Fahmy, F.H., Abou El-Zahab, E.M.: Maximum-power operation of a stand-alone PV system using fuzzy logic control. Int. J. Numer. Model. Electron. Netw. Devices Fields 15(4), 385–398 (2002)MATHCrossRef
9.
Zurück zum Zitat Bouchafaa, F., Hamzaoui, I., Hadjammar, A.: Fuzzy logic control for the tracking of maximum power point of a PV system. Energy Proc. 6(1), 152–159 (2011) Bouchafaa, F., Hamzaoui, I., Hadjammar, A.: Fuzzy logic control for the tracking of maximum power point of a PV system. Energy Proc. 6(1), 152–159 (2011)
10.
Zurück zum Zitat Veerachary, M., Senjyu, T., Uezato, K.: Neural-network-based maximum-power-point tracking of coupled inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Trans. Ind. Electron. 50(4), 749–758 (2003)CrossRef Veerachary, M., Senjyu, T., Uezato, K.: Neural-network-based maximum-power-point tracking of coupled inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Trans. Ind. Electron. 50(4), 749–758 (2003)CrossRef
11.
Zurück zum Zitat Rai, A.K., Kaushika, N.D., Singh, B., Agarwal, N.: Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Mater. Solar Cells 95(2), 773–778 (2011)CrossRef Rai, A.K., Kaushika, N.D., Singh, B., Agarwal, N.: Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Mater. Solar Cells 95(2), 773–778 (2011)CrossRef
12.
Zurück zum Zitat Cernazanu, C.: Training neural networks using input data characteristics. Adv. Electr. Comput. Eng. 8(2), 65–70 (2008)CrossRef Cernazanu, C.: Training neural networks using input data characteristics. Adv. Electr. Comput. Eng. 8(2), 65–70 (2008)CrossRef
13.
Zurück zum Zitat Rezvani, A., Izadbakhsh, M., Gandomkar, M.: Enhancement of hybrid dynamic performance using ANFIS for fast varying solar radiation and fuzzy logic controller in high speeds wind. J. Electr. Syst. 11(1), 11–26 (2015) Rezvani, A., Izadbakhsh, M., Gandomkar, M.: Enhancement of hybrid dynamic performance using ANFIS for fast varying solar radiation and fuzzy logic controller in high speeds wind. J. Electr. Syst. 11(1), 11–26 (2015)
14.
Zurück zum Zitat Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)CrossRef Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)CrossRef
15.
Zurück zum Zitat Abu-Rub, H., Iqbal, A., Ahmed, S.M.: Adaptive neuro-fuzzy inference system-based maximum power point tracking of solar PV modules for fast varying solar radiations. Int. J. Sustain. Energy 31, 383–398 (2012)CrossRef Abu-Rub, H., Iqbal, A., Ahmed, S.M.: Adaptive neuro-fuzzy inference system-based maximum power point tracking of solar PV modules for fast varying solar radiations. Int. J. Sustain. Energy 31, 383–398 (2012)CrossRef
16.
Zurück zum Zitat Kharb, R.K., Shimi, S.L., Chatterji, S., Ansari, M.F.: Modeling of solar PV module and maximum power point using ANFIS. Renew. Sustain. Energy 2014(33), 602–612 (2014)CrossRef Kharb, R.K., Shimi, S.L., Chatterji, S., Ansari, M.F.: Modeling of solar PV module and maximum power point using ANFIS. Renew. Sustain. Energy 2014(33), 602–612 (2014)CrossRef
17.
Zurück zum Zitat Hiyama, T., Kouzuma, S., Imakubo, T., Ortmeyer, T.H.: Evaluation of neural network based real time maximum power tracking controller far PV system. IEEE Trans. Energy Convers. 10(3), 543–548 (1995)CrossRef Hiyama, T., Kouzuma, S., Imakubo, T., Ortmeyer, T.H.: Evaluation of neural network based real time maximum power tracking controller far PV system. IEEE Trans. Energy Convers. 10(3), 543–548 (1995)CrossRef
18.
Zurück zum Zitat Hiyama, T., Kitabayashi, K.: Neural Network Based Estimation of Maximum Power Generation from PV Module Using Environment Information. IEEE Transaction on Energy Conversion 12(3), 241–247 (1997)CrossRef Hiyama, T., Kitabayashi, K.: Neural Network Based Estimation of Maximum Power Generation from PV Module Using Environment Information. IEEE Transaction on Energy Conversion 12(3), 241–247 (1997)CrossRef
19.
Zurück zum Zitat Hajir Karimi, H., Dastranj, J.: artificial neural network-based genetic algorithm to predict natural gas consumption. Energy Syst. 5(3), 571–581 (2014)CrossRef Hajir Karimi, H., Dastranj, J.: artificial neural network-based genetic algorithm to predict natural gas consumption. Energy Syst. 5(3), 571–581 (2014)CrossRef
20.
Zurück zum Zitat Shahat, A.: Maximum power point genetic identification functions for photovoltaic system. Int. J. Res. Rev. Appl. Sci. 3, 335–342 (2010) Shahat, A.: Maximum power point genetic identification functions for photovoltaic system. Int. J. Res. Rev. Appl. Sci. 3, 335–342 (2010)
21.
Zurück zum Zitat Vincheh, M.R., Kargar, A., Markadeh, G.A.: A hybrid control method for maximum power point tracking (MPPT) in photovoltaic systems. Arab. J. Sci. Eng. 39(6), 4715–4725 (2014)CrossRef Vincheh, M.R., Kargar, A., Markadeh, G.A.: A hybrid control method for maximum power point tracking (MPPT) in photovoltaic systems. Arab. J. Sci. Eng. 39(6), 4715–4725 (2014)CrossRef
22.
Zurück zum Zitat Ramaprabha, R., Gothandaraman, V., Kanimozhi, K., Divya, R., Mathur, B.L.: Maximum power point tracking using GA-optimized artificial neural network for Solar PV system. Electrical Energy Systems (ICEES), NewportBeach, pp. 264–268 (2011) Ramaprabha, R., Gothandaraman, V., Kanimozhi, K., Divya, R., Mathur, B.L.: Maximum power point tracking using GA-optimized artificial neural network for Solar PV system. Electrical Energy Systems (ICEES), NewportBeach, pp. 264–268 (2011)
23.
Zurück zum Zitat Hayatdavudi, M., Saeedimoghadam, M., Nabavi, M.H.: Adaptive Control of Pitch Angle of Wind Turbine using a Novel Strategy for Management of Mechanical Energy Generated by Turbine in Different Wind Velocities. Journal of Electrical Engineering & Technology. 8(4), 863–871 (2013)CrossRef Hayatdavudi, M., Saeedimoghadam, M., Nabavi, M.H.: Adaptive Control of Pitch Angle of Wind Turbine using a Novel Strategy for Management of Mechanical Energy Generated by Turbine in Different Wind Velocities. Journal of Electrical Engineering & Technology. 8(4), 863–871 (2013)CrossRef
24.
Zurück zum Zitat Knight, A.M., Peters, G.E.: Simple wind energy controller for an expanded operating range. IEEE Trans. Energy Convers. 20(2), 459–466 (2005)CrossRef Knight, A.M., Peters, G.E.: Simple wind energy controller for an expanded operating range. IEEE Trans. Energy Convers. 20(2), 459–466 (2005)CrossRef
25.
Zurück zum Zitat Li, H., Chen, Z.: Overview of different wind generator systems and their comparisons. IET Renew. Power Gener. 2(2), 123–138 (2007)CrossRef Li, H., Chen, Z.: Overview of different wind generator systems and their comparisons. IET Renew. Power Gener. 2(2), 123–138 (2007)CrossRef
26.
Zurück zum Zitat Joo, Y., Back, J.: Power regulation of variable speed wind turbines pitch control based on disturbance observer. J. Electr. Eng. Technol. 7(2), 273–280 (2012)CrossRef Joo, Y., Back, J.: Power regulation of variable speed wind turbines pitch control based on disturbance observer. J. Electr. Eng. Technol. 7(2), 273–280 (2012)CrossRef
27.
Zurück zum Zitat Simoes, M.G., Bose, B.K., Spiegel, R.J.: Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Trans. Power Electron. 12(1), 87–95 (1997)CrossRef Simoes, M.G., Bose, B.K., Spiegel, R.J.: Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Trans. Power Electron. 12(1), 87–95 (1997)CrossRef
28.
Zurück zum Zitat Muhandoa, E.B., Senjyua, T., Kinjob, H., Funabashi, T.: Augmented LQG controller for enhancement of online dynamic performance for WTG system. Renew. Energy 33, 1942–1952 (2008)CrossRef Muhandoa, E.B., Senjyua, T., Kinjob, H., Funabashi, T.: Augmented LQG controller for enhancement of online dynamic performance for WTG system. Renew. Energy 33, 1942–1952 (2008)CrossRef
29.
Zurück zum Zitat Yuan Lo, K., Chen, Y., Chang, Y.: MPPT battery charger for stand-alone wind power system. IEEE Trans. Power Electron. 26(6), 1631–1638 (2011)CrossRef Yuan Lo, K., Chen, Y., Chang, Y.: MPPT battery charger for stand-alone wind power system. IEEE Trans. Power Electron. 26(6), 1631–1638 (2011)CrossRef
30.
Zurück zum Zitat Cheung, J.Y.M., Kamal, A.S.: Fuzzy logic control of refrigerant flow. International Conference on Control, USA, pp. 125–130 (1996) Cheung, J.Y.M., Kamal, A.S.: Fuzzy logic control of refrigerant flow. International Conference on Control, USA, pp. 125–130 (1996)
31.
Zurück zum Zitat Gaurav, N., Kaur, A.: Performance evaluation of fuzzy logic and pid controller by using MATLAB/Simulink. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 1(1), 84–88 (2012) Gaurav, N., Kaur, A.: Performance evaluation of fuzzy logic and pid controller by using MATLAB/Simulink. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 1(1), 84–88 (2012)
32.
Zurück zum Zitat Lingfeng, X., Xiyun, Y., Xinran, L., Daping, X.: Based on adaptive fuzzy sliding mode controller. Intelligent Control and Automation WCICA 7th World Congress, China, pp. 2970–2975 (2008) Lingfeng, X., Xiyun, Y., Xinran, L., Daping, X.: Based on adaptive fuzzy sliding mode controller. Intelligent Control and Automation WCICA 7th World Congress, China, pp. 2970–2975 (2008)
33.
Zurück zum Zitat Amendola, C.A.M., Gonzaga, D.P.: Fuzzy-logic control system of a variable-speed variable-pitch wind-turbine and a double-fed induction generator. Intelligent systems design and applications. Seventh International Conference, Brazil, pp. 252–257 (2007) Amendola, C.A.M., Gonzaga, D.P.: Fuzzy-logic control system of a variable-speed variable-pitch wind-turbine and a double-fed induction generator. Intelligent systems design and applications. Seventh International Conference, Brazil, pp. 252–257 (2007)
34.
Zurück zum Zitat Senjyu, T., Sakamoto, R., Urasaki, N., Funabashi, T., Sekine, H.: Output power leveling of wind farm using pitch angle control with fuzzy neural network. In: IEEE Power Engineering Society General Meeting, Japan (2006) Senjyu, T., Sakamoto, R., Urasaki, N., Funabashi, T., Sekine, H.: Output power leveling of wind farm using pitch angle control with fuzzy neural network. In: IEEE Power Engineering Society General Meeting, Japan (2006)
35.
Zurück zum Zitat Van, T.L., Lee, D.C.H.: Output power smoothening of variable—speed wind turbine systems by pitch angle control. Conference on Power and Energy, Ho Chi Minh City, pp. 166–171 (2012) Van, T.L., Lee, D.C.H.: Output power smoothening of variable—speed wind turbine systems by pitch angle control. Conference on Power and Energy, Ho Chi Minh City, pp. 166–171 (2012)
36.
Zurück zum Zitat Gaonkar, D.N., Patel, R.N., Pillai, G.N.: Dynamic model of microturbine generation system for grid-connected/islanding operation. IEEE International Conference, pp. 305–310 (2006) Gaonkar, D.N., Patel, R.N., Pillai, G.N.: Dynamic model of microturbine generation system for grid-connected/islanding operation. IEEE International Conference, pp. 305–310 (2006)
37.
Zurück zum Zitat Pai, F.: An improved utility interface for microturbine generation system with stand-alone operation capabilities. IEEE Trans. Ind. Electron. 53(5), 1529–1537 (2006)CrossRef Pai, F.: An improved utility interface for microturbine generation system with stand-alone operation capabilities. IEEE Trans. Ind. Electron. 53(5), 1529–1537 (2006)CrossRef
38.
Zurück zum Zitat Qi, H.Y., Yi, F.B., Feng, S.J.: Simulation research on the microgrid with flywheel energy storage system. Power Syst. Prot. Control 39, 83–87 (2011) Qi, H.Y., Yi, F.B., Feng, S.J.: Simulation research on the microgrid with flywheel energy storage system. Power Syst. Prot. Control 39, 83–87 (2011)
39.
Zurück zum Zitat Zhaoxia, X., Chengshan, W., Shouxiang, W.: Small-signal Stability Analysis of Microgrid Containing Multiple Micro Sources. Autom. Electr. Power Syst. 33(6), 81–85 (2009) Zhaoxia, X., Chengshan, W., Shouxiang, W.: Small-signal Stability Analysis of Microgrid Containing Multiple Micro Sources. Autom. Electr. Power Syst. 33(6), 81–85 (2009)
40.
Zurück zum Zitat Peas Lopes, J.A., Moreira, C., Madureira, A.G.: Defining control strategies for MicroGrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)CrossRef Peas Lopes, J.A., Moreira, C., Madureira, A.G.: Defining control strategies for MicroGrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)CrossRef
41.
Zurück zum Zitat Katiraei, F., Irvani, M., Lehn, P.: Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans. Power 20(1), 248–257 (2005)CrossRef Katiraei, F., Irvani, M., Lehn, P.: Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans. Power 20(1), 248–257 (2005)CrossRef
42.
Zurück zum Zitat Kamel, R.M., Chaouachi, A., Nagasaka, K.: Detailed analysis of micro-grid stability during islanding mode under different load conditions. Engineering 3, 508–516 (2011)CrossRef Kamel, R.M., Chaouachi, A., Nagasaka, K.: Detailed analysis of micro-grid stability during islanding mode under different load conditions. Engineering 3, 508–516 (2011)CrossRef
43.
Zurück zum Zitat Moradian, M., Tabatabaei, F.M., Moradian, S.: Modeling, control and fault management of microgrids. Smart Grid Renew. Energy 4(1), 99–112 (2013)CrossRef Moradian, M., Tabatabaei, F.M., Moradian, S.: Modeling, control and fault management of microgrids. Smart Grid Renew. Energy 4(1), 99–112 (2013)CrossRef
44.
Zurück zum Zitat Bayat, M., Rahimpour, M.R.: Dynamic optimal analysis of a novel cascade membrane methanol reactor by using genetic algorithm (GA) method. Energy Syst. 4(2), 137–164 (2013)CrossRef Bayat, M., Rahimpour, M.R.: Dynamic optimal analysis of a novel cascade membrane methanol reactor by using genetic algorithm (GA) method. Energy Syst. 4(2), 137–164 (2013)CrossRef
45.
Zurück zum Zitat Arifujjaman, Md.: Modeling, simulation and control of grid connected permanent magnet generator (PMG)-based small wind energy conversion system. Electrical power and energy conference (2010) Arifujjaman, Md.: Modeling, simulation and control of grid connected permanent magnet generator (PMG)-based small wind energy conversion system. Electrical power and energy conference (2010)
46.
Zurück zum Zitat Rosyadi, M., Muyeen, S.M., Takahashi, R., Tamura, J.: Transient stability enhancement of variable speed permanent magnet wind generator using adaptive pi-fuzzy controller. Power Tech. Conf, Trondheim (2011) Rosyadi, M., Muyeen, S.M., Takahashi, R., Tamura, J.: Transient stability enhancement of variable speed permanent magnet wind generator using adaptive pi-fuzzy controller. Power Tech. Conf, Trondheim (2011)
47.
Zurück zum Zitat Blaabjerg, F., Teodorescu, R., Liserre, M.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)CrossRef Blaabjerg, F., Teodorescu, R., Liserre, M.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)CrossRef
Metadaten
Titel
Enhancement of microgrid dynamic responses under fault conditions using artificial neural network for fast changes of photovoltaic radiation and FLC for wind turbine
verfasst von
Alireza Rezvani
Maziar Izadbakhsh
Majid Gandomkar
Publikationsdatum
01.11.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Energy Systems / Ausgabe 4/2015
Print ISSN: 1868-3967
Elektronische ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-015-0156-6

Weitere Artikel der Ausgabe 4/2015

Energy Systems 4/2015 Zur Ausgabe