Skip to main content
Erschienen in: Energy Systems 2/2016

01.05.2016 | Original Paper

Slow dynamics model of compressed air energy storage and battery storage technologies for automatic generation control

verfasst von: Venkat Krishnan, Trishna Das

Erschienen in: Energy Systems | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Increasing variable generation penetration and the consequent increase in short-term variability makes energy storage technologies look attractive, especially in the ancillary market for providing frequency regulation services. This paper presents slow dynamics model for compressed air energy storage and battery storage technologies that can be used in automatic generation control studies to assess the system frequency response and quantify the benefits from storage technologies in providing regulation service. The paper also represents the slow dynamics model of the power system integrated with storage technologies in a complete state space form. The storage technologies have been integrated to the IEEE 24 bus system with single area, and a comparative study of various solution strategies including transmission enhancement and combustion turbine have been performed in terms of generation cycling and frequency response performance metrics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
4.
Zurück zum Zitat Chen, Y., et al.: Incorporating short-term stored energy resource into Midwest ISO energy and ancillary service market. IEEE Trans. Power Syst. 26(2), 829–838 (2011)CrossRef Chen, Y., et al.: Incorporating short-term stored energy resource into Midwest ISO energy and ancillary service market. IEEE Trans. Power Syst. 26(2), 829–838 (2011)CrossRef
5.
Zurück zum Zitat Tripathy, S.C., Juengst, K.P.: Sampled data automatic generation control with superconducting magnetic energy storage in power systems. IEEE Trans. Energy Convers. 12(2), 187–192 (1997)CrossRef Tripathy, S.C., Juengst, K.P.: Sampled data automatic generation control with superconducting magnetic energy storage in power systems. IEEE Trans. Energy Convers. 12(2), 187–192 (1997)CrossRef
6.
Zurück zum Zitat Lyons, P.G.: Energy storage for power systems with rapidly changing loads. Thesis, Purdue University (1992) Lyons, P.G.: Energy storage for power systems with rapidly changing loads. Thesis, Purdue University (1992)
7.
Zurück zum Zitat Xie, P., Qian, B., Shi, D., Chen, J., Zhu, L.: Supplementary automatic generation control using electric vehicle battery swapping stations. In: 2013 IEEE Power and Energy Society General Meeting (PES), Vancouver, BC, 21–25 July 2013, pp. 1–5 (2013) Xie, P., Qian, B., Shi, D., Chen, J., Zhu, L.: Supplementary automatic generation control using electric vehicle battery swapping stations. In: 2013 IEEE Power and Energy Society General Meeting (PES), Vancouver, BC, 21–25 July 2013, pp. 1–5 (2013)
8.
Zurück zum Zitat Cheng, Y., Tabrizi, M., Sahni, M., Povedano, A., Nichols, D.: Dynamic available AGC based approach for enhancing utility scale energy storage performance. IEEE Trans. Smart Grid 5(2), 1070–1078 (2014)CrossRef Cheng, Y., Tabrizi, M., Sahni, M., Povedano, A., Nichols, D.: Dynamic available AGC based approach for enhancing utility scale energy storage performance. IEEE Trans. Smart Grid 5(2), 1070–1078 (2014)CrossRef
9.
Zurück zum Zitat Donadee, J.: Wang J, AGC signal modeling for energy storage operations. IEEE Trans. Power Syst. 29(5), 2567–2568 (2014)CrossRef Donadee, J.: Wang J, AGC signal modeling for energy storage operations. IEEE Trans. Power Syst. 29(5), 2567–2568 (2014)CrossRef
10.
Zurück zum Zitat Keyhani, A., Chatterjee, A.: Automatic generation control structure for smart power grids. IEEE Trans. Smart Grid 3(3), 1310–1316 (2012)CrossRef Keyhani, A., Chatterjee, A.: Automatic generation control structure for smart power grids. IEEE Trans. Smart Grid 3(3), 1310–1316 (2012)CrossRef
11.
Zurück zum Zitat Antonishen, M.P., Han, H.Y., Brekken, T.K.A., von Jouanne, A., Yokochi, A., Halamay, D.A., Song, J., Naviaux, D.B., Davidson, J.D., Bistrika, A.: A methodology to enable wind farm participation in automatic generation control using energy storage devices. In: 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 22–26 July 2012, pp 1–7 (2012) Antonishen, M.P., Han, H.Y., Brekken, T.K.A., von Jouanne, A., Yokochi, A., Halamay, D.A., Song, J., Naviaux, D.B., Davidson, J.D., Bistrika, A.: A methodology to enable wind farm participation in automatic generation control using energy storage devices. In: 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 22–26 July 2012, pp 1–7 (2012)
12.
Zurück zum Zitat Gampa, S.R., Das, D.: Real power and frequency control of a small isolated power system. Int. J. Electr. Power Energy Syst. 64, 221–232 (2015)CrossRef Gampa, S.R., Das, D.: Real power and frequency control of a small isolated power system. Int. J. Electr. Power Energy Syst. 64, 221–232 (2015)CrossRef
13.
Zurück zum Zitat Das, D.C., Roy, A.K., Sinha, N.: GA based frequency controller for solar thermal-diesel-wind hybrid energy generation/energy storage system. Int. J. Electr. Power Energy Syst. 43(1), 262–279 (2012)CrossRef Das, D.C., Roy, A.K., Sinha, N.: GA based frequency controller for solar thermal-diesel-wind hybrid energy generation/energy storage system. Int. J. Electr. Power Energy Syst. 43(1), 262–279 (2012)CrossRef
14.
Zurück zum Zitat Chatterjee, A., Ghoshal, S.P., Mukherjee, V.: Transient performance improvement of grid connected hydro system using distributed generation and capacitive energy storage unit. Int. J. Electr. Power Energy Syst. 43(1), 210–221 (2012)CrossRef Chatterjee, A., Ghoshal, S.P., Mukherjee, V.: Transient performance improvement of grid connected hydro system using distributed generation and capacitive energy storage unit. Int. J. Electr. Power Energy Syst. 43(1), 210–221 (2012)CrossRef
15.
Zurück zum Zitat Pandey, S.K., Mohanty, S.R., Kishor, N., Catalão, J.P.S.: Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. Int. J. Electr. Power Energy Syst. 63, 887–900 (2014)CrossRef Pandey, S.K., Mohanty, S.R., Kishor, N., Catalão, J.P.S.: Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. Int. J. Electr. Power Energy Syst. 63, 887–900 (2014)CrossRef
16.
Zurück zum Zitat Ramakrishna, K., et al.: Automatic generation control of interconnected power system with diverse sources of power generation. Int. J. Eng. Sci. Technol. 2(5), 51–65 (2010)CrossRef Ramakrishna, K., et al.: Automatic generation control of interconnected power system with diverse sources of power generation. Int. J. Eng. Sci. Technol. 2(5), 51–65 (2010)CrossRef
17.
Zurück zum Zitat Rowen, W.I.: Simplified mathematical representation of heavy duty gas turbines. ASME J. Eng. Power 105, 865–869 (1983)CrossRef Rowen, W.I.: Simplified mathematical representation of heavy duty gas turbines. ASME J. Eng. Power 105, 865–869 (1983)CrossRef
18.
Zurück zum Zitat Robinson, M.: Midwest ISO market design: wind in energy, capacity and ancillary services markets. In: UWIG Workshop, UWIG 2004. Albany - Albany, NY (2004) Robinson, M.: Midwest ISO market design: wind in energy, capacity and ancillary services markets. In: UWIG Workshop, UWIG 2004. Albany - Albany, NY (2004)
19.
Zurück zum Zitat Das, T., Krishnan, V., McCalley, J.: High-fidelity dispatch model of storage technologies for production costing studies. IEEE Trans. Sustain. Energy 5(4), 1242–1252 (2014)CrossRef Das, T., Krishnan, V., McCalley, J.: High-fidelity dispatch model of storage technologies for production costing studies. IEEE Trans. Sustain. Energy 5(4), 1242–1252 (2014)CrossRef
20.
Zurück zum Zitat Samineni, S.: Modeling and analysis of a flywheel energy storage system for voltage sag correction. M.S. Thesis, University of Idaho (2003) Samineni, S.: Modeling and analysis of a flywheel energy storage system for voltage sag correction. M.S. Thesis, University of Idaho (2003)
21.
Zurück zum Zitat Das, T., Krishnan, V., Yang, G., McCalley, J.D.: Compressed air energy storage: state space modeling and performance analysis. In: 2011 IEEE Power and Energy Society General Meeting, San Diego, CA, 24–29 July 2011, pp. 1–8 (2011) Das, T., Krishnan, V., Yang, G., McCalley, J.D.: Compressed air energy storage: state space modeling and performance analysis. In: 2011 IEEE Power and Energy Society General Meeting, San Diego, CA, 24–29 July 2011, pp. 1–8 (2011)
22.
Zurück zum Zitat Ferguson, T.B.: The Centrifugal Compressor Stage. Butterworth, London (1963) Ferguson, T.B.: The Centrifugal Compressor Stage. Butterworth, London (1963)
23.
Zurück zum Zitat Succar, S., Williams, R.H.: Compressed air energy storage: theory, resources, and applications for wind power. In: Energy Systems Analysis Group, Princeton Environmental Institute. Princeton university, Princeton (2008) Succar, S., Williams, R.H.: Compressed air energy storage: theory, resources, and applications for wind power. In: Energy Systems Analysis Group, Princeton Environmental Institute. Princeton university, Princeton (2008)
24.
Zurück zum Zitat Korpaas, M., Holen, A.T., Hildrum, R.: Operation and sizing of energy storage for wind power plants in a market system. Int. J. Electr. Power Energy Syst. 25, 599–606 (2003)CrossRef Korpaas, M., Holen, A.T., Hildrum, R.: Operation and sizing of energy storage for wind power plants in a market system. Int. J. Electr. Power Energy Syst. 25, 599–606 (2003)CrossRef
25.
Zurück zum Zitat Moran, M.J., Shapiro, H.N., Munson, B.R., Dewitt, D.P.: Introduction to Thermal Systems Engineering. Wiley, New York (2002) Moran, M.J., Shapiro, H.N., Munson, B.R., Dewitt, D.P.: Introduction to Thermal Systems Engineering. Wiley, New York (2002)
26.
Zurück zum Zitat F. Crotogino, K. U. Mohmeyer and R. Scharf, Huntorf CAES: More than 20 Years of Successful Operation. Spring 2001 Meeting, USA F. Crotogino, K. U. Mohmeyer and R. Scharf, Huntorf CAES: More than 20 Years of Successful Operation. Spring 2001 Meeting, USA
28.
Zurück zum Zitat Tremblay, O., Dessaint, L.A.: Experimental validation of a battery dynamic model for EV applications. World Electr. Veh. J. 3, 1–10 (2009) (ISSN 2032–6653, \({\copyright }\) 2009 AVERE, EVS24 Stavanger, Norway, May 13–16, 2009) Tremblay, O., Dessaint, L.A.: Experimental validation of a battery dynamic model for EV applications. World Electr. Veh. J. 3, 1–10 (2009) (ISSN 2032–6653, \({\copyright }\) 2009 AVERE, EVS24 Stavanger, Norway, May 13–16, 2009)
29.
Zurück zum Zitat Krishnan, V., Das, T., McCalley, J.: Impact of short-term storage on frequency response under increasing wind penetration. J. Power Sour. 257, 111–119 (2014)CrossRef Krishnan, V., Das, T., McCalley, J.: Impact of short-term storage on frequency response under increasing wind penetration. J. Power Sour. 257, 111–119 (2014)CrossRef
Metadaten
Titel
Slow dynamics model of compressed air energy storage and battery storage technologies for automatic generation control
verfasst von
Venkat Krishnan
Trishna Das
Publikationsdatum
01.05.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Energy Systems / Ausgabe 2/2016
Print ISSN: 1868-3967
Elektronische ISSN: 1868-3975
DOI
https://doi.org/10.1007/s12667-015-0157-5

Weitere Artikel der Ausgabe 2/2016

Energy Systems 2/2016 Zur Ausgabe