Skip to main content
Log in

Dynamic Failure of a Lamina Meshwork in Cell Nuclei under Extreme Mechanical Deformation

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The nuclear lamina is a structural protein meshwork at the inner nuclear membrane. It confers mechanical strength to the cell’s nucleus and also sustains the overall structural integrity of the cell. The rupture of nuclear lamina is involved in many physiologically extreme conditions, such as cell division, genetic disease, and injury. Yet, its rupture mechanisms and processes are largely unknown and failure models commonly used for engineering materials cannot be directly applied due to the complex hierarchical structure. Here, we use a multiscale modeling technique to investigate the dynamic failure of the nuclear lamina meshwork from the bottom up. We find that flaws or cracks in the nuclear lamina act as seeds for catastrophic failure that propagate rapidly upon very large deformation. Fracture occurs via crack propagation at intersonic speeds, and greater than the Rayleigh-wave speed predicted as a limit by classical fracture theory but smaller than the longitudinal wave speed. Our analysis shows that nanoscale secondary structural changes in protein filaments such as the alpha–beta transition and intermolecular sliding explain this macroscale phenomenon. Based on a simple model, we discover that the crack propagation speed is governed by the square root of the ratio of the tangent material moduli in (E x ) and perpendicular (E y ) to the crack propagation direction, v ~ √(E x /E y ) where the relative levels of applied strains in the x- and y-direction control the crack speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Herrmann, H., Bar, H., Kreplak, L., Strelkov, S. V., Aebi, U. (2007). Intermediate filaments: from cell architecture to nanomechanics. Nature Reviews Molecular Cell Biology, 8(7), 562–573.

    Article  Google Scholar 

  2. Aebi, U., Cohn, J., Buhle, L., Gerace, L. (1986). The nuclear lamina is a meshwork of intermediate-type filaments. Nature, 323(6088), 560–564.

    Article  Google Scholar 

  3. Ishikawa, H., Bischoff, R., Holtzer, H. (1968). Mitosis and intermediate-sized filaments in developing skeletal muscle. The Journal of Cell Biology, 38(3), 538–555.

    Article  Google Scholar 

  4. Chang, L., Shav-Tal, Y., Trcek, T., Singer, R. H., Goldman, R. D. (2006). Assembling an intermediate filament network by dynamic cotranslation. The Journal of Cell Biology, 172(5), 747–758.

    Article  Google Scholar 

  5. Omary, M. B., Coulombe, P. A., McLean, W. H. I. (2004). Mechanisms of disease: intermediate filament proteins and their associated diseases. The New England Journal of Medicine, 351(20), 2087–2100.

    Article  Google Scholar 

  6. van der Kooi, A. J., Bonne, G., Eymard, B., Duboc, D., Talim, B., Van der Valk, M., et al. (2002). Lamin A/C mutations with lipodystrophy, cardiac abnormalities, and muscular dystrophy. Neurology, 59(4), 620–623.

    Google Scholar 

  7. Dahl, K. N., Scaffidi, P., Islam, M. F., Yodh, A. G., Wilson, K. L., Misteli, T. (2006). Distinct structural and mechanical properties of the nuclear lamina in Hutchinson-Gilford progeria syndrome. Proceedings Of The National Academy Of Sciences Of The United States Of America, 103(27), 10271–10276.

    Article  Google Scholar 

  8. Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., Scott, L., et al. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature, 423(6937), 293–298.

    Article  Google Scholar 

  9. Djaczenk, W., Starzyk, H., Rzucidlo, Z. (1973). X-ray-irradiation induced changes of nuclear membrane of Kirkman-Robbins tumor-cells. Experientia, 29(1), 83–84.

    Article  Google Scholar 

  10. Strelkov, S. V., Schumacher, J., Burkhard, P., Aebi, U., Herrmann, H. (2004). Crystal structure of the human lamin a coil 2B dimer: implications for the head-to-tail association of nuclear lamins. Journal Of Molecular Biology, 343(4), 1067–1080.

    Article  Google Scholar 

  11. Buehler, M. J., & Yung, Y. C. (2009). Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Materials, 8(3), 175–188.

    Article  Google Scholar 

  12. Scaffidi, P., & Misteli, T. (2006). Lamin A-dependent nuclear defects in human aging. Science, 312(5776), 1059–1063.

    Article  Google Scholar 

  13. Herrmann, H., & Aebi, U. (1998). Intermediate filament assembly: fibrillogenesis is driven by decisive dimer-dimer interactions. Current Opinion in Structural Biology, 8(2), 177–185.

    Article  Google Scholar 

  14. Carpinteri, A., & Pugno, N. M. (2008). Mechanics of hierarchical materials. International Journal of Fracture, 150(1–2), 221–226.

    Article  MATH  Google Scholar 

  15. Ackbarow, T., Sen, D., Thaulow, C., Buehler, M. J. (2009). Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS ONE, 4(6), e6015.

    Article  Google Scholar 

  16. Qin Z, Buehler MJ (2011) Flaw tolerance of nuclear intermediate filament lamina under extreme mechanical deformation. ACS Nano. doi:10.1021/nn200107u.

  17. Petersan, P. J., Deegan, R. D., Marder, M., Swinney, H. L. (2004). Cracks in rubber under tension exceed the shear wave speed. Physical Review Letters, 93(1), 015504.

    Article  Google Scholar 

  18. Sen, D., Thaulow, C., Schieffer, S. V., Cohen, A., Buehler, M. J. (2010). Atomistic study of crack-tip cleavage to dislocation emission transition in silicon single crystals. Physical Review Letters, 104(23), 235502.

    Article  Google Scholar 

  19. Qin, Z., Kreplak, L., Buehler, M. J. (2009). Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS ONE, 4(10), e7294.

    Article  Google Scholar 

  20. Qin, Z., & Buehler, M. J. (2010). Molecular dynamics simulation of the alpha-helix to beta-sheet transition in coiled protein filaments: evidence for a critical filament length scale. Physical Review Letters, 104(19), 198304.

    Article  Google Scholar 

  21. Goldberg, M. W., Huttenlauch, I., Hutchison, C. J., Stick, R. (2008). Filaments made from A- and B-type lamins differ in structure and organization. Journal of Cell Science, 121(2), 215–225.

    Article  Google Scholar 

  22. Dahl, K. N., Kahn, S. M., Wilson, K. L., Discher, D. E. (2004). The nuclear envelope lamina network has elasticity and a compressibility limit suggestive of a molecular shock absorber. Journal of Cell Science, 117(20), 4779–4786.

    Article  Google Scholar 

  23. Bertaud, J., Qin, Z., Buehler, M. J. (2010). Intermediate filament-deficient cells are mechanically softer at large deformation: a multi-scale simulation study. Acta Biomaterialia, 6(7), 2457–2466.

    Article  Google Scholar 

  24. Buehler, M. J., & Gao, H. J. (2006). Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature, 439(7074), 307–310.

    Article  Google Scholar 

  25. Batchelor, G. K. (1967). An introduction to fluid dynamics. Cambridge: University Press.

    MATH  Google Scholar 

  26. Jennings, B. R., & Parslow, K. (1988). Particle-size measurement—the equivalent spherical diameter. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 419(1856), 137–149.

    Article  Google Scholar 

  27. Plimpton, S. (1995). Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117(1), 1–19.

    Article  MATH  Google Scholar 

  28. Humphrey, W., Dalke, A., Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.

    Article  Google Scholar 

  29. Buehler, M. J., Abraham, F. F., Gao, H. J. (2003). Hyperelasticity governs dynamic fracture at a critical length scale. Nature, 426(6963), 141–146.

    Article  Google Scholar 

  30. Baumberger, T., Caroli, C., Martina, D. (2006). Solvent control of crack dynamics in a reversible hydrogel. Nature Materials, 5(7), 552–555.

    Article  Google Scholar 

  31. Pugno, N. M. (2006). Dynamic quantized fracture mechanics. International Journal of Fracture, 140(1–4), 159–168.

    Article  MATH  Google Scholar 

  32. Pugno, N. M., & Ruoff, R. S. (2004). Quantized fracture mechanics. Philosophical Magazine, 84(27), 2829–2845.

    Article  Google Scholar 

  33. Wegst, U. G. K., & Ashby, M. F. (2004). The mechanical efficiency of natural materials. Philosophical Magazine, 84(21), 2167–2181.

    Article  Google Scholar 

  34. Espinosa, H. D., Rim, J. E., Barthelat, F., Buehler, M. J. (2009). Merger of structure and material in nacre and bone—perspectives on de novo biomimetic materials. Progress in Materials Science, 54(8), 1059–1100.

    Article  Google Scholar 

  35. Nukala, P. K., & Simunovic, S. (2005). Statistical physics models for nacre fracture simulation. Phys Rev E Stat Nonlin Soft Matter Phys, 72(4 Pt 1), 041919.

    Article  Google Scholar 

  36. Pugno, N. M. (2006). Mimicking nacre with super-nanotubes for producing optimized super-composites. Nanotechnology, 17(21), 5480–5484.

    Article  Google Scholar 

  37. Qin, Z., Feng, X. Q., Zou, J., Yin, Y. J., Yu, S. W. (2007). Superior flexibility of super carbon nanotubes: molecular dynamics simulations. Applied Physics Letters, 91(4), 043108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus J. Buehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Z., Buehler, M.J. Dynamic Failure of a Lamina Meshwork in Cell Nuclei under Extreme Mechanical Deformation. BioNanoSci. 1, 14–23 (2011). https://doi.org/10.1007/s12668-011-0003-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-011-0003-8

Keywords

Navigation