Skip to main content
Log in

Numerical Thermal Analysis of a Wireless Cortical Implant with Two-Body Packaging

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This article presents the numerical analysis of temperature elevation in the head due to the operation of a wireless cortical implant. The thermal analyses are done by using a finite-difference time-domain simulation tool and a high-resolution 3-D head phantom with 22 different tissues. The effects of the power dissipation level, size, location, and packaging of the implant on the temperature distribution in the head are investigated by using a generic silicon chip. Furthermore, the distribution of the power consumption in the implant by using multiple integrated circuits is discussed. In order not to exceed the safety precaution limit of 1°C, maximum allowable power dissipation in a chip of size 2 × 2 × 0.5 mm3 is found to be 5.3 mW, whereas it is 9.3 mW for an implant with two chips of the same size separated by 10 mm. Additionally, the thermal analysis of a wireless cortical implant is also done by using a two-body cortical implant prototype. Maximum allowable power consumption for the two-body implant is found as 35 mW, whereas the unibody implant can only dissipate 17.5 mW without exceeding the safety precaution limit. By using the two-body implant, the maximum allowable power consumption in the implant can be increased or the temperature elevation in the tissues can be decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. SEMCAD X assigns the temperature of each voxel to the center of that voxel. For example, for a voxel that has grid lines at depth = 0 mm and depth = 0.25 mm, the temperature is assigned to the voxel located at depth = 0.125 mm. This is valid for all three axes.

References

  1. Nordhausen, C. T., Maynard, E. M., Normann, R. A. (1996). Single unit recording capabilities of a 100 microelectrode array. Brain Research, 726, 129–140.

    Article  Google Scholar 

  2. Aarts, A. A. A., et al. (2008). A 3D slim-base probe array for in vivo recorded neuron activity. In Proc. IEEE EMBC’08 (pp. 5798–5801).

  3. Wise, K. D., Anderson, D. J., Hetke, J. F., Kipke, D. R., Najafi, K. (2004). Wireless implantable microsystems: High-density electronic interfaces to the nervous system. Proceedings of the IEEE, 92, 76–97.

    Article  Google Scholar 

  4. Harrison, R. R., et al. (2007). A low-power integrated circuit for a wireless 100-electrode neural recording system. IEEE Journal of Solid-State Circuits, 42, 123–133.

    Article  Google Scholar 

  5. de Lorge, J. O. (1983). The thermal basis for disruption of operant behavior by microwaves in three animal species. In E. R. Adair (Ed.), Microwaves and thermoregulation (pp. 379–399). New York: Academic.

    Google Scholar 

  6. IEEE (2006). IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Standard C95.1-2005.

  7. Ibrahim, T. S., Abraham, D., Rennaker, R. L. (2007). Electromagnetic power absorption and temperature changes due to brain machine interface operation. Annals of Biomedical Engineering, 35, 825–834.

    Article  Google Scholar 

  8. Kim, S., Tathireddy, P., Normann, R., Solzbacher, F. (2007). Thermal impact of an active 3-D microelectrode array implanted in the brain. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15, 493–501.

    Article  Google Scholar 

  9. DeMarco, S. C., Lazzi, G., Liu, W. T., Weiland, J. D., Humayun, M. S. (2003). Computed SAR and thermal elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted retinal stimulator—Part I: Models and methods. IEEE Transactions on Antennas and Propagation, 51, 2274–2285.

    Article  Google Scholar 

  10. Lazzi, G., DeMarco, S. C., Liu, W. T., Weiland, J. D., Humayun, M. S. (2003). Computed SAR and thermal elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted retinal stimulator—Part II: Results. IEEE Transactions on Antennas and Propagation, 51, 2286–2295.

    Article  Google Scholar 

  11. Gosalia, K., Weiland, J., Humayun, M., Lazzi, G. (2004). Thermal elevation in the human eye and head due to the operation of a retinal prosthesis. IEEE Transactions on Biomedical Engineering, 51, 1469–1477.

    Article  Google Scholar 

  12. Lazzi, G. (2005) Thermal effects of bioimplants. IEEE Engineering in Medicine and Biology Magazine, 24, 75–81.

    Article  Google Scholar 

  13. Silay, K. M., Dehollain, C., Declercq, M. (2008). Numerical analysis of temperature elevation in the head due to power dissipation in a cortical implant. In Proc. IEEE EMBC’08 (pp. 951–956).

  14. Pennes, H. H. (1948). Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1, 93–122.

    Google Scholar 

  15. Bernardi, P., Cavagnaro, M., Pisa, S., Piuzzi, E. (2003). Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10–900-MHz range. IEEE Transactions on Biomedical Engineering, 50, 295–304.

    Article  Google Scholar 

  16. Schmid & Partner Engineering AG, SEMCAD X homepage. http://www.semcad.com/.

  17. National Library of Medicine, USA. The Visible Human Project. http://www.nlm.nih.gov/research/visible/.

  18. Schmid & Partner Engineering AG (2007). SEMCAD X reference manual.

  19. Duck, F. A. (1990). Physical properties of tissue: A comprehensive reference book. San Diego: Academic.

    Google Scholar 

  20. Engineering Fundamentals Online Database. http://www.efunda.com/materials/elements/.

  21. Thermal Properties for PCBs—Online calculator. http://www.frigprim.com/online/cond_pcb.html.

  22. Lee, S. M. (2005). Finite element simulation and parameter optimization of a flexible tactile pressure sensor array. Master’s thesis, Massachusetts Institute of Technology.

  23. Armani, D., Liu, C., Aluru, N. (1999). Re-configurable fluid circuits by PDMS elastomer micromachining. In Proc. IEEE MEMS’99 (pp. 222–227).

  24. Chuang, H., & Wereley, S. (2009). Design, fabrication and characterization of a conducting PDMS for microheaters and temperature sensors. Journal of Micromechanics and Microengineering, 19, 045010.

    Article  Google Scholar 

  25. Silay, K. M., Dehollain, C., Declercq, M. (2010). Inductive power link for a wireless cortical implant with biocompatible packaging. In Proc. IEEE Sensors’10 (pp. 94–98).

  26. Silay, K. M., Dehollain, C., Declercq, M. (2008). Orthogonally oriented coils for minimization of cross-coupling in cortical implants. In Proc. IEEE BioCAS’08 (pp. 109–112).

Download references

Acknowledgements

This work was supported by the Swiss National Funding in the frame of the NEURO-IC project. The authors gratefully acknowledge Schmid & Partner Engineering AG for their help and support for SEMCAD X. The authors thank H. C. Tekin and Prof. M. Gijs from EPFL Microsystems Laboratories for their helps in packaging and G. Yilmaz for his feedbacks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanber Mithat Silay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silay, K.M., Dehollain, C. & Declercq, M. Numerical Thermal Analysis of a Wireless Cortical Implant with Two-Body Packaging. BioNanoSci. 1, 78–88 (2011). https://doi.org/10.1007/s12668-011-0009-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-011-0009-2

Keywords

Navigation