Skip to main content
Log in

Nano-Crossbar Memories Comprising Parallel/Serial Complementary Memristive Switches

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This work explores anti-serial (anti-parallel) memristive switches—ASMs (APMs)—as potential cross-point elements in nano-crossbar resistive random access memory arrays. The memory operation principles for both device combinations are shown in detail. The effectiveness of these memristive structures to the solution of the parasitic conducting (current sneak paths) problem is presented via an analytical approach which is based on the basic setup of resistive crossbar memories. Simulation results of crossbars of up to 4,096 elements, arranged in quadratic configurations, are conducted. The provided results supplement this comprehensive analysis of APMs and ASMs, outlining their overall performance characteristics and commenting on their applicability to the practical realization of large crossbar memory systems. Finally, a special array topology is applied to an ASM-based crossbar memory. Its performance is compared to the performance of the pure ASM-based memory. The conducted simulations reveal significantly improved read-out voltage margins which further contribute to addressing the parasitic current paths which prevent the reliable operation of memristive crossbar circuit topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wright, C. D., Liu, Y., Kohary, K. I., Aziz, M. M., Hicken, R. J. (2011). Arithmetic and biologically-inspired computing using phase-change materials. Advanced Materials, 23, 3408–3413.

    Article  Google Scholar 

  2. Waser, R. (2009). Resistive non-volatile memory devices (Invited Paper). Microelectronic Engineering, 7–9, 1925–1928.

    Article  Google Scholar 

  3. Wong, H.-S. P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., et al. (2012). Metal-Oxide RRAM. Proceedings of the IEEE, 6, 1951–1970.

    Article  Google Scholar 

  4. Chua, L. O. (2011). Resistance switching memories are memristors. Applied Physics, 4, 765–783.

    Article  Google Scholar 

  5. Chua, L. O. (1971). Memristor—the missing circuit element. IEEE Trans Circuit Theory, 18, 507–519.

    Article  Google Scholar 

  6. Strukov, D. B., Snider, G. S., Stewart, D. R., Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  7. Sacchetto, D., Doucey, M.-A., De Micheli, G., Leblebici, Y., Carrara, S. (2011). New insight on bio-sensing by nano-fabricated memristors. BioNanoScience, 1–2, 1–3.

    Article  Google Scholar 

  8. Vourkas, I., & Sirakoulis, G. C. (2013). Recent progress and patents on computational structures and methods with memristive devices. Recent Patents on Electrical & Electronic Engineering, 2, 101–116.

    Article  Google Scholar 

  9. Erokhin, V., Berzina, T., Camorani, P., Smerieri, A., Vavoulis, D., Feng, J., et al. (2011). Material memristive device circuits with synaptic plasticity: learning and memory. BioNanoScience, 1–2, 24–30.

    Article  Google Scholar 

  10. Howard, G., Gale, E., Bull, L., de Lacy, C. B., Adamatzky, A. (2012). Evolution of plastic learning in spiking networks via memristive connections. IEEE Trans Evolutionary Computation, 5, 711–729.

    Article  Google Scholar 

  11. Erokhin, V., Howard, G. D., Adamatzky, A. (2012). Organic memristor devices for logic elements with memory. International Journal of Bifurcation and Chaos, 11, 1250283.

    Article  MathSciNet  Google Scholar 

  12. Manem, H., Rajendran, J., Rose, G. S. (2012). Design considerations for multilevel CMOS/nano memristive memory. ACM Journal on Emerging Technologies in Computing Systems, 1–6, 1–22.

    Article  Google Scholar 

  13. Lehtonen, E., Poikonen, J. H., Laiho, M., Kanerva, P. (2013). Large-scale memristive associative memories. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. doi:10.1109/TVLSI.2013.2250319.

    Google Scholar 

  14. Eshraghian, K., Cho, K.-R., Kavehei, O., Kang, S.-K., Abbott, D., Kang, S.-M. S. (2011). Memristor MOS content addressable memory (MCAM): hybrid architecture for future high performance search engines. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8, 1407–1416.

    Article  Google Scholar 

  15. Gaillardon, P.-E., Sacchetto, D., Beneventi, G. B., Ben Jamaa, M. H., Perniola, L., Clermidy, F., et al. (2013). Design and architectural assessment of 3-D resistive memory technologies in FPGAs. IEEE Transactions on Nanotechnology, 1, 40–50.

    Article  Google Scholar 

  16. Hussaina, W., & Jahinuzzaman, S. M. (2012). A read-decoupled gated-ground SRAM architecture for low-power embedded memories. Integration, the VLSI Journal (Special Issue of GLSVLSI 2011: Current Trends on VLSI and Ultra Low-Power Design), 3, 229–236.

    Google Scholar 

  17. International Technology Roadmap for Semiconductors (2013) [Online]: http://www.itrs.net/ Accessed 24 December 2013.

  18. Heath, J. R., Kuekes, P. J., Snider, G. S., Williams, R. S. (1998). A defect-tolerant computer architecture: opportunities for nanotechnology. Science, 280, 1716–1721.

    Article  Google Scholar 

  19. Zidan, M. A., Fahmy, H. A. H., Hussain, M. M., Salama, K. N. (2013). Memristor-based memory: the sneak paths problem and solutions. Microelectronics Journal, 2, 176–183.

    Article  Google Scholar 

  20. Lee, M.-J., Park, Y., Kang, B.-S., Ahn, S.-E., Lee, C. B., Kim, K., et al. (2007). 2-stack 1D–1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications (pp. 771–774). Washington, DC: IEEE Int Elec Dev Meeting (IEDM 2007).

    Google Scholar 

  21. Fei, W., Yu, H., Zhang, W., Yeo, K. S. (2012). Design exploration of hybrid CMOS and memristor circuit by new modified nodal analysis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 6, 1012–1025.

    Article  Google Scholar 

  22. Kim, K.-H., Gaba, S., Wheeler, D., Cruz-Albrecht, J. M., Hussain, T., Srinivasa, N., et al. (2012). A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Letters, 1, 389–395.

    Article  Google Scholar 

  23. Kim, S., Jeong, H. Y., Kim, S. K., Choi, S.-Y., Lee, K. J. (2011). Flexible memristive memory array on plastic substrates. Nano Letters, 12, 5438–5442.

    Article  Google Scholar 

  24. Shin, J., Kim, I., Biju, K. P., Jo, M., Park, J., Lee, J., et al. (2011). TiO2-based metal—insulator—metal selection device for bipolar resistive random access memory cross-point application. Journal of Applied Physics, 3, 033712.

    Article  Google Scholar 

  25. Linn, E., Rosezin, R., Kugeler, C., Waser, R. (2010). Complementary resistive switches for passive nanocrossbar memories. Nature Materials, 5, 403–406.

    Article  Google Scholar 

  26. Liu, T., Kang, Y., Verma, M., Orlowski, M. K. (2012). Switching characteristics of antiparallel resistive switches. IEEE Transactions on Electron Devices Letters, 3, 429–431.

    Article  Google Scholar 

  27. Vourkas, I., & Sirakoulis, G. C. (2012). A novel design and modeling paradigm for memristor-based crossbar circuits. IEEE Transactions on Nanotechnology, 6, 1151–1159.

    Article  Google Scholar 

  28. Vourkas, I., Stathis, D., Sirakoulis, G. C. (2013). Improved read voltage margins with alternative topologies for memristor-based crossbar memories (pp. 364–367). Istanbul: Proc 21st IFIP/IEEE Int Conf Very Large Scale Integr (VLSI-SoC 2013).

    Google Scholar 

  29. Tappertzhofen, S., Linn, E., Nielen, L., Rosezin, R., Lentz, F., Bruchhaus, R., et al. (2011). Capacity based nondestructive readout for complementary resistive switches. Nanotechnology, 39, 395203.

    Article  Google Scholar 

  30. Vourkas, I., & Sirakoulis, G. C. (2013). On the analog computational characteristics of memristive networks in 2013 (pp. 309–312). Abu Dhabi: IEEE Int Conf Electronics, Circuits, and Systems (ICECS 2013).

    Google Scholar 

  31. Pershin, Y. V., & Di Ventra, M. (2011). Memory effects in complex materials and nanoscale systems. Advances in Physics, 2, 145–227.

    Article  Google Scholar 

  32. Mustafa, J., & Waser, R. (2006). A novel reference scheme for reading passive resistive crossbar memories. IEEE Transactions on Nanotechnology, 6, 687–691.

    Article  Google Scholar 

  33. Flocke, A., & Noll, T. G. (2007). Fundamental analysis of resistive nano-crossbars for the use in hybrid nano/CMOS-memory (pp. 328–331). Munich: 33rd European Conf Solid State Circuits (ESSCIRC 2007).

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a scholarship from the Bodossaki Foundation in Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Vourkas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vourkas, I., Sirakoulis, G.C. Nano-Crossbar Memories Comprising Parallel/Serial Complementary Memristive Switches. BioNanoSci. 4, 166–179 (2014). https://doi.org/10.1007/s12668-014-0132-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0132-y

Keywords

Navigation