Skip to main content
Log in

Electrokinetics of Cells in Dielectrophoretic Separation: A Biological Perspective

  • Published:
BioNanoScience Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Separation of biological cells from the mixture has been studied over a period of time in medicine and basic environmental research. Dielectrophoresis (DEP) is one among the portable techniques to separate the cells with minimum requirements such as electric field and effective medium. With the advent of BioMEMS, the understanding of dielectric characteristics of various biological cells has become imperative. Dielectric properties of the biological cells are studied by the extensive involvement of bioelectrokinetics with respect to the electric field. This has led to the accumulation of data on properties of cells, particularly with respect to dielectrophoresis (DEP). This article reviews the bioelectrokinetics of biological cells and how they are exploited in cell separation using DEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yoon, Y.K., Park JH, Cros, F., Allen, M.G. (2003) Integrated vertical screen microfilter system using inclined SU-8 structures, in: Proceedings of the 16th International Conference on Micro Electro Mechanical Systems 2003 (MEMS’03), Kyoto, Japan, 227– 230.

  2. Fu, A. Y., Spence, C., Scherer, A., Arnold, F. H., Quake, S. R. (1999). A microfabricated fluorescence-activated cell sorter. Nature Biotechnology, 17, 1109–1111.

    Article  Google Scholar 

  3. Chalmers, J. J., Zborowski, M., Sun, L., Moore, L. (1998). Flow through Immunomagnetic cell separation. Biotechnology Progress, 14, 141.

    Article  Google Scholar 

  4. Cheng, I.-F., Froude, V., Zhu, Y. E., Chang, H.-C., Chang, H.-C. (2009). A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis. Lab on a Chip, 9, 3193–3201.

    Article  Google Scholar 

  5. Zhang, L., Tatar, F., Turmezei, P., Bastemeijer, J., Mollinger, J. R., Piciu, O., et al. (2006). Continuous electrodeless dielectrophoretic separation in circular channel. Journal of Physics, 34, 527–532.

    Google Scholar 

  6. Doh, I., & Cho, Y. H. (2005). A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sensors and Actuators A, 121, 59–65.

    Article  Google Scholar 

  7. Armstrong, D. W., Schulte, G., Schneiderheinze, J. M., Westenberg, D. J. (1999). Separating microbes in the manner of molecules. Capillary electrokinetic approaches. Analytical Chemistry, 71, 5465–5469.

    Article  Google Scholar 

  8. Jones, T. B. (1995). Electromechanics of particles. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  9. Pohl, H. (1978). Dielectrophoresis. Cambridge: Cambridge University Press.

    Google Scholar 

  10. Burt, J. P. H., Pethig, R., Gascoyne, P. R. C., Becker, F. F. (1990). Dielectrophoretic characterisation of friend murine erythroleukaemic cells as a measure of induced differentiation. Biochimica et Biophysica Acta, 1034(1), 93–101.

    Article  Google Scholar 

  11. Kovacic, P., & Pozos, R. S. (2007). Bioelectronome. Integrated approach to receptor chemistry, radicals, electrochemistry, cell signaling, and physiological effects based on electron transfer. Journal of Receptor and Signal Transduction Research, 27(4), 261–94.

    Article  Google Scholar 

  12. Kovacic, P., Pozos, R. S., Draskovich, C. D. (2007). Unifying electrostatic mechanism for receptor-ligand activity. Journal of Receptor and Signal Transduction Research, 27(5–6), 411–31.

    Article  Google Scholar 

  13. Zhang, C., Khoshmanesh, K., Mitchell, A., Kalantarzadeh, K. (2010). Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Analytical and Bioanalytical Chemistry, 396, 401–420.

    Article  Google Scholar 

  14. Alshareef, M., Metrakos, N., Perez, E. J., Azer, F., Yang, F., et al. (2013). Separation of tumor cells with dielectrophoresis-based microfluidic chip. Biomicrofluidics, 7, 01180. doi:10.1063/1.4774312.

    Article  Google Scholar 

  15. Patel, S., Showers, D., Vedantam, P., Tzeng, T. R., Qian, S. (2012). Xuan X (2012) Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis. Biomicrofluidics, 6, 034102.

    Article  Google Scholar 

  16. Gonzalez, C. F., & Remcho, V. T. (2005). Harnessing dielectric forces for separations of cells, fine particles and macromolecules. Journal of Chromatography. A, 1079, 59–68.

    Article  Google Scholar 

  17. Lei Pei-Hou Sun, U., & Pethig, R. (2011). Refinement of the theory for extracting cell dielectric properties from dielectrophoresis and electrorotation experiments. Biomicrofluidics, 5, 044109.

    Article  Google Scholar 

  18. Fricke, H. (1955). The complex conductivity of a suspension of stratified particles of spherical or cylindrical form. Journal of Physical Chemistry, 59, 168–170.

    Article  Google Scholar 

  19. Fricke, H. (1953). The electric permittivity of a dilute suspension of membrane-covered ellipsoids. Journal of Applied Physics, 24, 644–6.

    Article  Google Scholar 

  20. Chen, J., Abdelgawad, M., Yu, L., Shakiba, N., Chien, W. Y., Lu, Z., et al. (2011). Electrodeformation for single cell mechanical characterization. Journal of Micromechanics and Microengineering, 21, 054012.

    Article  Google Scholar 

  21. Kregiel, D., Berlowoska, J., Szubzda, B. (2012). Novel permittivity test for determination of yeast surface charge and flocculation abilities. Journal of Industrial Microbiology and Biotechnology. doi:10.1007/s10295 – 012- 1193 – y.

    Google Scholar 

  22. Pauly, H., Packer, L., Schwan, H. P. (1960). Electrical properties of mitochondrial membranes. Journal of Cell Biology, 7(4), 589–601.

    Article  Google Scholar 

  23. Maxwell, J. C. (1873). A treatise on electricity and magnetism Vol 1. Oxford U K: Clarendon.

    Google Scholar 

  24. Wagner, K. W. (1914). The after effects in di electrics. Archiv Elektrotechnik, 2, 371–87.

    Article  Google Scholar 

  25. Carstensen, E. L., Cox, H. A., Mercer, W. B., Natale, L. A. (1965). Passive electrical properties of microorganisms: Conductivity of Escherichia coli and Micrococcus lysodeikticus. Biophysical Journal, 5(3), 289–300.

    Article  Google Scholar 

  26. Cevc, G. (1990). Membrane electrostatics. Biochimica et Biophysica Acta, 1031, 311–82.

    Article  Google Scholar 

  27. Pethig, R. (1979). Dielectric and electronic properties of biological systems: Their significance in physiology, biophysics and biotechnology. Physics in Medicine and Biology, 32, 933–70.

    Article  Google Scholar 

  28. Sonohara, R., Muramatsu, N., Ohshima, H., Kondo, T. (1995). Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophysical Chemistry, 55, 273–277.

    Article  Google Scholar 

  29. Markx, G. H., Pethig, R., Rousselet, J. (1997). The dielectrophoretic levitation of latex beads, with reference to field-flow fractionation. Journal of Physics D: Applied Physics, 30, 2470–2477.

    Article  Google Scholar 

  30. Gurtovenko, A. A., & Vattulainen, I. (2008). Membrane potential and electrostatics of phospholipid bilayers with asymmetric transmembrane distribution of anionic lipids. Journal of Physical Chemistry B, 112, 4629–4634.

    Article  Google Scholar 

  31. Andreev, V. P. (2013). Cytoplasmic electric fields and electroosmosis: Possible solution for the paradoxes of the intracellular transport of biomolecules. PLoS ONE, 8(4), e61884. doi:10.1371/journal.pone.0061884.

    Article  Google Scholar 

  32. Singh, A., Orsat, V., Raghavan, V. (2013). Soybean hydrophobic protein response to external electric field: a molecular modeling approach. Biomolecules, 3, 168–179.

    Article  Google Scholar 

  33. Castellarnau, M., Errachid, A., Madrid, C., Juarez, A., Samitier, J. (2006). Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophysical Journal, 91(2006), 3937–3945.

    Article  Google Scholar 

  34. Gatenby, R. A., & Frieden, B. R. (2010). Coulomb interactions between cytoplasmic electric fields and phosphorylated messenger proteins optimize information flow in cells. PLoS One, 5(8), e12084.

    Article  Google Scholar 

  35. Pethig, R., & Markx, G. H. (1997). Applications of dielectrophoresis in biotechnology. Trends in Biotechnology, 15, 426–432.

    Article  Google Scholar 

  36. Davey, C.L., Kell, D. B. (1995) The low frequency dielectric properties of biological cells. In. Waltz D, Berg H, Milazzo G, editors. Bioelectrochemistry of cells and tissues. Zurich: Birkauser.159 – 207.

  37. Regtmeier, J., Duong, T. T., Eichhorn, R., Anselmetti, D., Ros, A. (2007). Dielectrophoretic manipulation of DNA: Separation and polarizability. Analytical Chemistry, 79, 3925–3932.

    Article  Google Scholar 

  38. Morgan, H., & Green, G. (2003). Electrokinetic technologies for sub-micron particles. Philadelphia: Research Studies Press.

    Google Scholar 

  39. Holzel, R., Calander, N., Chiragwandi, Z., Willander, M., Bier, F. F. (2005). Trapping single molecules by Dielectrophoresis. Physical Review Letters, 95, 128102–4.

    Article  Google Scholar 

  40. Porschke, D. (1997). Macrodipoles: Unusual electric properties of biological macromolecules. Biophysical Chemistry, 66, 241–257.

    Article  Google Scholar 

  41. Chou, C. F., Tegenfeldt, J. O., Bakajin, O., Chan, S. S., Cox, E. C., Darton, N., et al. (2002). Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophysical Journal, 83, 2170–2179.

    Article  Google Scholar 

  42. Henning, A., Bier, F. F. F., Holzel, R. (2010). Dielelctophoresis of DNA: Quantification by impedance measurements. Biomicrofluidics, 4, 022803.

    Article  Google Scholar 

  43. Regtmeier, J., Eichhorn, R., Bogunovic, L., Ros, A., Anselmetti, D. (2010). Dielectrophoretic trapping and polarizability of DNA: the role of spatial conformation. Analytical Chemistry, 82, 7141–7149.

    Article  Google Scholar 

  44. Markx, G. H., Huang, Y., Zhou, X. F., Pethig, R. (1994). Dielectrophoretic characterisation and separation of micro-organisms. Microbiology UK, 140, 585–591.

    Article  Google Scholar 

  45. Morgan, H., Ginzburg, M., Ginzburg, B. Z. (1987). Dielectric properties of the halophilic bacteria Halobacterium halobium and H. marismortui with reference to the conductivities and permittivities of the cytoplasmic membrane and intracellular phases. Biochimica et Biophysica Acta, 924(1), 54–66.

    Article  Google Scholar 

  46. Abo - Shady, A. M., Mohamed, Y. A., Lasheen, T. (1993). Chemical composition of the cell wall in some green algae species. Biologia Plantarum, 35(4), 629–632.

    Article  Google Scholar 

  47. Hardison, S. E., & Brown, G. D. (2012). Structure of the fungal cell wall. Nature Immunology, 13, 817–822.

    Article  Google Scholar 

  48. Sendbuschand, P. V. (2003). Cell walls of Algae. Botany Online, 7(31), 10–29. Retrived on 2007.

    Google Scholar 

  49. Khoshmanesh, K., Baratchi, S., Tovar-Lopez, F. J., Nahavandi, S., Wlodkowic, D., Mitchell, A., et al. (2012). On-chip separation of Lactobacillus bacteria from yeasts using dielectrophoresis. Microfluidics and Nanofluidics, 12, 597–606.

    Article  Google Scholar 

  50. Moncada-Hernández, H., & Lapizco-Encinas, B. H. (2010). Simultaneous concentration and separation of microorganisms: Insulator-based dielectrophoretic approach. Analytical and Bioanalytical Chemistry, 396, 805–1816.

    Article  Google Scholar 

  51. Denga, Y. L., Chang, J, S, Juang,Y. J., (2012) Separation of microalgae with different lipid contents by dielectrophoresis. Bioresource Technology.

  52. Gallo Villanueva, R. C., Perez, N. M., Martnez-Lopez, J. I., Lapizco-Encinas, P. A. (2011). Assessment of microalgae viability employing insulator-based dielectrophoresis. Microfluidics and Nanofluidics, 10, 1305–1315.

    Article  Google Scholar 

  53. Lee, K. J. D., Marcus, S. E., Knux, J. P. (2011). Cell wall biology: Perspectives from cell wall imaging. Molecular Plant, 4, 212–219.

    Article  Google Scholar 

  54. Jutiporn, S., Wanichapichart, P., Mahaworasilpa, T., Coster, H. G. L. (1999). AC electric field frequencies for isolating five marine phytoplanktons. Songklanakarin J Sci Technol, 21(2), 213–9.

    Google Scholar 

  55. Nieper, H. A. (1985). Dr. Nieper’s Revolution in Technology, Medicine and Societ. Oldenburg: MIT Verlag.

    Google Scholar 

  56. Hughes, M. P., Wang, X., Burt, J. P. H, Pethig, R., Watkins, L. R.., (1994) In: Proceedings of 2nd International Conference on Comp. Electromag 38: 48–51.

  57. Yang, J., Huang, Y., Wang, X., Becker, F. F., Gascoyne, P. R. C. (1999). Dielectric Properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. Biophysical Journal, 76, 3307–3314.

    Article  Google Scholar 

  58. Yang, J., Huang, Y., Wang, X., Becker, F. F., Gascoyne, P. R. C. (2000). Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation. Biophysical Journal, 78, 2680–2689.

    Article  Google Scholar 

  59. Chan, K. L., Morgan, H., Morgan, E., Cameron, I. T., Thomas, M. R. (2000). Measurements of the dielectric properties of peripheral blood mononuclear cells and trophoblast cells using AC electrokinetic technique. Biochimica et Biophysica Acta, 1500, 313–322.

    Article  Google Scholar 

  60. Muratore, M., Srsen, V., Waterfall, M., Downes, A., Pethig, R. (2012). Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy. Biomicrofluidics, 6, 034113.

    Article  Google Scholar 

  61. Kucera, O., & Havelka, D. (2012). Mechano-electrical vibrations of microtubules—Link to subcellular morphology. BioSystems, 109, 346–355.

    Article  Google Scholar 

  62. Mazzanti, M., Bustamante, J. O., Oberleithner, H. (2001). Electrical dimension of the nuclear envelope. Physiological Reviews, 81, 1–19.

    Google Scholar 

  63. Becker, F. F., Wang, X. B., Huang, Y., Pethig, R., Vykoukal, J., Gascoyne, P. R. (1995). Separation of human breast cancer cells from blood by differential dielectric affinity. Proceedings of the National Academy of Science USA Cell Biology, 92, 860–864.

    Article  Google Scholar 

  64. Blad, B., & Baldetorp, B. (1996). Impedance spectra of tumour tissue in comparison with normal issue: a possible clinical application for electrical impedance tomography. Physiological Measurement, 17, 105–115.

    Article  Google Scholar 

  65. Cone, C. D. (1985). Transmembrane potentials and characteristics of immune and tumor cells. Boca Raton Florida: CRC Press.

    Google Scholar 

  66. Gupta, V., Jafferji, I., Garza, M., Melnikova, V. O., Hasegawa, D. K., et al. (2012). ApoStream, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics, 6, 024133.

    Article  Google Scholar 

  67. Salmanzadeh, A., Kittur, H., Sano, M. B., Roberts, P. C., Schmelz, E. M., Davalos, R. V. (2012). Dielectrophoretic differentiation of mouse ovarian surface epithelial cells, macrophages, and fibroblasts using contactless dielectrophoresis. Biomicrofluidics, 6, 024104.

    Article  Google Scholar 

  68. Cima, I., Yee, C. W., Iliescu, F. S., Phyo, W. M., Lim, K. H., Iliescu, C., et al. (2013). Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives. Biomicrofluidics, 7, 011810.

    Article  Google Scholar 

  69. Nikolic-Jaric, M., Cabel, T., Salimi, E., Bhide, A., Braasch, K., et al. (2013). Differential electronic detector to monitor apoptosis using dielectrophoresis induced translation of flowing cells (dielectrophoresis cytometry). Biomicrofluidics, 7, 024101.

    Article  Google Scholar 

  70. Lapizco-Encinas, B. H., Simmons, B. A., Cummings, E. B. (2004). Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis, 25, 1695–1704.

    Article  Google Scholar 

  71. Li, H., & Bashir, R. (2002). Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sensors and Actuator B. Chemical, 86, 215–221.

    Article  Google Scholar 

  72. Jen, C. –. P., & Chen, T. –. w. (2009). Selective trapping of live and dead mammalian cells using insulator based dielectrophoresis within open–top microstructures. Biomedical Microdevices, 11, 597–607.

    Article  Google Scholar 

  73. Jen, C. P., & Chen, T. W. (2009). Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomedical Microdevices, 11(3), 597–607.

    Article  Google Scholar 

  74. Huang, Y., Holzel, R., Pethig, R., Wang, X. B. (1992). Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Physics in Medicine and Biology, 37(7), 499–1517.

    Article  Google Scholar 

  75. Docoslis, A., Espinoza, L. A. T., Zhang, B., Cheng, L. L., Israel, B. A., Alexandridis, P., et al. (2007). Using non uniform electric fields to accelerate the transport of viruses to surfaces from media of physiological ionic strength. Langmuir, 23, 3840–3848.

    Article  Google Scholar 

  76. Moon, H. S., Nam, Y. W., Park, J. C., Jung, H. I. (2009). Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring. Environmental Science and Technology, 43(15), 5857–5863.

    Article  Google Scholar 

  77. Hughes, M. P., Hotteges, K. F., (2008) Bacterial Concentration, Separation and Analysis by Dielectrophoresis. Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems 895-907.

  78. Li, S., Li, M., Robin, K. B., Cao, W., Yeung, I., Chau, Y., et al. (2013). High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip. Biomicrofluidics, 7, 024106.

    Article  Google Scholar 

  79. Velev, O. D., & Bhatt, K. H. (2006). On-chip micromanipulation and assembly of colloidal particles by electric fields. The Royal Society of Chemistry, Soft Matter, 2, 738–750.

    Article  Google Scholar 

  80. Gordon, J. E., Gagnon, Z., Chang, H. C. (2007). Dielectrophoretic discrimination of bovine red blood cell starvation age by buffer selection and membrane cross linking. Biomicrofluidics, 1, 044102.

    Article  Google Scholar 

  81. Suscillon, C., Velev, O. D., Slaveykova, V. I. (2013). Alternating current-dielectrophoresis driven on-chip collection and chaining of green microalgae in freshwaters. Biomicrofluidics, 7, 024109.

    Article  Google Scholar 

  82. Wu, L., Yung, L. Y. L., Lim, K. M. (2012). Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells. Biomicrofluidics, 6, 014113.

    Article  Google Scholar 

  83. Knox, J. H., & McCormack, K. A. (1994). Temperature effects in capillary electrophoresis 2: Some theoretical calculations and predictions. Chromatographia, 38, 215–221.

    Article  Google Scholar 

  84. Rush, R. S., Cohen, A. S., Cohen, A. S., Karger, B. L. (1991). Influence of column temperature on the electrophoretic behavior of myoglobin and alpha-lactalbumin in high-performance capillary electrophoresis. Analytical Chemistry, 63, 1346–1350.

    Article  Google Scholar 

  85. Castellanos, A., Ramos, A., Gonzalez, A., Green, N. G., Morgan, H. (2003). Electrohydrodynamics and dielectrophoresis in microsystems: Scaling law. Journal of Physics D: Applied Physics, 36, 2584–2597.

    Article  Google Scholar 

  86. Jones, P. V., Staton, S. J. R., Hayes, M. A. (2011). Blood cell capture in a sawtooth dielectrophoretic microchannel. Analytical and Bioanalytical Chemistry, 401, 103–2111.

    Article  Google Scholar 

  87. Gupta, S., (2007) On-chip Assembly of Electrically Functional Structures from Biological and Colloidal Particles. Dissertation, North Carolina State University.

  88. Noble, P. A., Dziuba, M., Harrison, D. J., Albritton, W. L. (1999). Factors influencing capacitance-based monitoring of microbial growth. Journal of Microbiological Methods, 37, 51–64.

    Article  Google Scholar 

  89. Beveridge, T.J., (1988) Wall ultrastructure: how little we know. InActor, P., Daneo-Moore, L., Higgins, M.L., Salton, M.R.J., Shockman, G.D. (Eds.), Antibiotic Inhibition of Bacterial cell Surface Assembly and Function. American Society for Micro- biology, Washington, DC, USA, 3–20.

  90. Beveridge, T. J., & Graham, L. L. (1991). Surface layers of bacteria. Microbiological Reviews, 55, 684–705.

    Google Scholar 

  91. Champlin, F. R., Patterson, C. E., Austin, F. W., Ryals, P. E. (1999). Derivation of extracellular polysaccharide-deficient variants from a serotype A strain of Pasteurella multocida. Current Microbiology, 38, 268–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ananthasubramanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, U.V., Puri, P., Sharma, N.N. et al. Electrokinetics of Cells in Dielectrophoretic Separation: A Biological Perspective. BioNanoSci. 4, 276–287 (2014). https://doi.org/10.1007/s12668-014-0140-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0140-y

Keywords

Navigation