Skip to main content
Log in

Antibacterial and Antibiofilm Potential of Green Synthesized Silver Nanoparticles against Imipenem Resistant Clinical Isolates of P. aeruginosa

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Green chemistry is generating an increasing amount of interest for the synthesis of metal nanoparticles due to the cost-effectiveness and eco-friendly nature of the plants. The green approach of nanoparticle synthesis is a better substitute for the chemical and physical methods since there is no involvement of toxic chemicals. The objective of the present research was the synthesis of silver nanoparticles (AgNPs) using bark extract of the medicinal plant Holarrhena pubescens Wall ex G. Don (HP) and evaluating their antibacterial and antibiofilm properties against clinical isolates of P. aeruginosa. The HP-AgNPs were characterized by ultraviolet-visible spectroscopy, Fourier transform infra red, atomic force microscopy, and transmission electron microscopy (TEM). The synthesized HP-AgNPs were spherical in shape, and the average particle size as analyzed by TEM was 13.15 nm. The antibacterial potential of HP-AgNPs was evaluated by determining MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration). The MIC was found to be in the range of 20–25 μg/ml. Further, the interaction of AgNPs with imipenem-resistant P. aeruginosa was analyzed by TEM. The rupturing of the cell membrane and cell wall was seen at the lethal concentration, and the nanoparticles entered the cell from the several sites that caused great damage to the cell which eventually led to cell death. The antibiofilm properties of HP-AgNPs against imipenem-resistant P. aeruginosa were demonstrated by CLSM (confocal laser scanning microscopy) using propidium iodide and ConA-FITC dye. CLSM images clearly show that as the concentration of HP-AgNPs increased, the number of biofilm-forming cells decreased due to the cell death. It was also observed that AgNPs inhibit or restrict the colonization and halts the formation of biofilm. The result obtained suggested that green-synthesized HP-AgNPs have great antibacterial and antibiofilm potential and could be used as an alternative agent to treat the infection caused by imipenem-resistant P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7

Similar content being viewed by others

References

  1. Ansari, M. A., Khan, H. M., Khan, A. A., Sultan, A., & Azam, A. (2012). Synthesis and characterization of the antibacterial potential of ZnO nanoparticles against extended-spectrum b-lactamases producing Escherichia coli and Klebsiella pneumoniae isolated from a tertiary care hospital of North India. Applied Microbiology and Biotechnology, 94, 467–477.

    Article  Google Scholar 

  2. Bereket, W., Hemalatha, K., Getenet, B., Wondwossen, T., Solomon, A., Zeynudin, A., & Kannan, S. (2012). Update on bacterial nosocomial infections. Euro Rev Med Pharmacol Sci., 16, 1039–1044.

    Google Scholar 

  3. Su, H. C., Ramkissoon, K., Doolittle, J., Clark, M., Khatun, J., Secrest, A., et al. (2010). The development of ciprofloxacin resistance in Pseudomonas aeruginosa involves multiple response stages and multiple proteins. Antimicrobial Agents and Chemotherapy, 54, 4626–4635.

    Article  Google Scholar 

  4. Juan, C., Zamorano, L., Perez, J. L., Ge, Y., Oliver, A., et al. (2010). Activity of a new antipseudomonal cephalosporin, CXA-101 (FR264205), against carbapenem-resistant and multidrug resistant Pseudomonas aeruginosa clinical strains. Antimicrobial Agents and Chemotherapy, 54, 846–851.

    Article  Google Scholar 

  5. DeQueiroz, G. A., & Day, D. F. (2007). Antimicrobial activity and effectiveness of a combination of sodium hypochlorite and hydrogen peroxide in killing and removing Pseudomonas aeruginosa biofilms from surfaces. Journal of Applied Microbiology, 103, 794–802.

    Article  Google Scholar 

  6. Davis, S. C., Martinez, L., & Kirsner, R. (2006). The diabetic foot: the importance of biofilms and wound bed preparation. Curr. Diabet. Rep., 6, 439–445.

    Article  Google Scholar 

  7. Smith, A. W. (2005). Biofilms and antibiotic therapy: is there a role for combating bacterial resistance by the use of novel drug delivery systems? Advanced Drug Delivery Reviews, 57, 1539–1550.

    Article  Google Scholar 

  8. Pal, S., Tak, Y. K., & Song, J. M. (2007). Dose the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73, 1712–1720.

    Article  Google Scholar 

  9. Weir, E., Lawlor, A., Whelan, A., & Regan, F. (2008). The use of nanoparticles in anti- microbial materials and their characterization. The Analyst, 133, 835–845.

    Article  Google Scholar 

  10. Muhling, M., Bradford, A., Readman, J. W., Somerfield, P. J., & Handy, R. D. (2009). An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Marine Environmental Research, 68, 278–283.

    Article  Google Scholar 

  11. Yeo, S. Y., Lee, H. J., & Jeong, S. H. (2003). Preparation of nanocomposite fibers for permanent antibacterial effect. Journal of Materials Science, 38, 2143–2147.

    Article  Google Scholar 

  12. Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H., et al. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5, 916–924.

    Article  Google Scholar 

  13. Gogoi, S. K., Gopinath, P., Paul, A., Ramesh, A., Ghosh, S. S., & Chattopadhyay, A. (2006). Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles. Langmuir, 22, 9322–9328.

    Article  Google Scholar 

  14. Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., et al. (2004). Nanoparticulate silver. A new antimicrobial substance for bone cement. Orthopade, 33, 885–892.

    Article  Google Scholar 

  15. Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizúrova, N., et al. (2006). Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry. B, 110, 16248–16253.

    Article  Google Scholar 

  16. Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., & Shah, S. I. (2005). Synthesis and antibacterial properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 5, 244–249.

    Article  Google Scholar 

  17. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., et al. (2005). The bactericidal effect of silver nanoparticles. Nanotechnol, 16, 2346–2353.

    Article  Google Scholar 

  18. Ip, M., Lui, S. L., Poon, V. K., Lung, I., & Burd, A. (2006). Antimicrobial activities of silver dressings: an in vitro comparison. Journal of Medical Microbiology, 55, 59–63.

    Article  Google Scholar 

  19. Vilchis-Nestor, A. R., Sanchez-Mendieta, V., Camacho-Lopez, M. A., Gomez-Espinosa, R. M., Camacho-Lopez, M. A., & Arenas-Alatorre, J. A. (2008). Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Materials Letters, 62, 3103–3105.

    Article  Google Scholar 

  20. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.

    Article  Google Scholar 

  21. Sastry, M., Ahmad, A., Khan, M. I. and Kumar, R. (2004). Microbial nanoparticle production, in nanobiotechnology: concepts, applications and perspectives (eds C. M. Niemeyer and C. A. Mirkin), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. doi: https://doi.org/10.1002/3527602453.ch9.

  22. Bhattacharya, D., & Gupta, R. K. (2005). Nanotechnology and potential of microorganisms. Critical Reviews in Biotechnology, 25, 199–204.

    Article  Google Scholar 

  23. Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10, 507–517.

    Article  Google Scholar 

  24. Singh, K., Panghal, M., Kadyan, S., Chaudhary, U., & Yadav, J. P. (2014). Antibacterial activity of synthesized silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients. Journal Nanomed Nanotechnol, 5, 192.

    Google Scholar 

  25. Yadav, J. P., Kumar, S., Budhwar, L., Yadav, A., & Yadav, M. (2016). Characterization and antibacterial activity of synthesized silver and iron nanoparticles using Aloe vera. Journal of Nanomedicine & Nanotechnology, 7, 384.

    Google Scholar 

  26. Ali, S. G., Ansari, M. A., Khan, H. M., Jalal, M., Mahdi, A. A., & Cameotra, S. S. (2017). Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa. Journal Basic Microbiology, 57, 193–203.

    Article  Google Scholar 

  27. Ali, S. G., Khan, H. M., Jalal, M., Ansari, M. A., Mahdi, A. A., & Ahmad, M. K. (2015). Green synthesis of silver nanoparticles using the leaf extract of Putranjiva roxburghii wall. and their antimicrobial activity. Asian journal of Pharmaceutical and Clinical Research, 8, 335–338.

    Google Scholar 

  28. Bhutani, K. K. (1984). Proceedings of national symposium of applied biotechnology of medicinal, aromatic and timber yielding plants. University of Calcutta, India;. pp. 387–392.

  29. Sharma, P.C., Yelen, M.B., and Dennis, T. J. (2004). In database on medicinal plants used in Ayurveda, Vol 2. New Delhi; Central Council for Research in Ayurveda and Siddha; p.550.

  30. Bhattacharjee, S. K. (2004). Handbook of medicinal plants. Jaipur: Pointer Publishers.

    Google Scholar 

  31. Daniel, M. (2006). Medicinal plants. New Delhi: Oxford of IBH Publishing.

    Book  Google Scholar 

  32. Kumar, N., Singh, B., Bhandari, P., Gupta, A. P., & Kaul, V. K. (2007). Steroidal alkaloids from Holarrhena antidysenterica (L.) wall. Chemical and Pharmaceutical Bulletin., 55, 912–914.

    Article  Google Scholar 

  33. Tille, M.P. (2013). Pseudomonas, Burkholderia and similar organism In: Bailey & Scott’s Diagnostic Microbiology, 13 edn. Elsevier, Ch-22, pp 335–347.

  34. Clinical Laboratory Standards Institute (2012). Performance standards for antimicrobial susceptibility testing; 22nd informational supplement. Document M100-S22. Clinical laboratory standards institute, Wayne, PA.

  35. Banas, J. A., Hazlet, K. R. O., & Mazurkiewicz, J. E. (2001). An in vitro model for studying the contributions of the Streptococcus mutans glucan-binding protein—a to biofilm structure. Meth. Enzymol., 337, 425–433.

    Article  Google Scholar 

  36. Zhao, G., & Stevens, S. E. (1998). Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals, 11, 27–32.

    Article  Google Scholar 

  37. Liu, Q., Li, X., Li, W., Du, X., He, J. Q., Tao, C., & Feng, Y. (2015). Influence of carbapenem resistance on mortality of patients with Pseudomonas aeruginosa infection: a meta-analysis. Scientific Reports, 5, 11715.

    Article  Google Scholar 

  38. Buehrle, D. J., Shields, R. K., Clarke, L. G., Potoski, B. A., Clancy, C. J., & Nguyen, M. H. (2017). Carbapenem-resistant Pseudomonas aeruginosa bacteremia: risk factors for mortality and microbiologic treatment failure. Antimicrobial Agents and Chemotherapy, 61, e01243–e01216.

    Article  Google Scholar 

  39. Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.

    Article  Google Scholar 

  40. Bao, H., Yu, X., Xu, C., Li, X., Li, Z., Wei, D., & Liu, Y. (2015). New toxicity mechanism of silver nanoparticles: promoting apoptosis and inhibiting proliferation. PLoS One, 10(3), e0122535.

    Article  Google Scholar 

  41. Ali, S. G., Ansari, M. A., Jamal, Q. M. S., Khan, H. M., Jalal, M., Ahmad, H., & Mahdi, A. A. (2017). Antiquorum sensing activity of silver nanoparticles in P. aeruginosa: an in silico study. In Silico Pharmacol, 5, 12. https://doi.org/10.1007/s40203-017-0031-3

    Article  Google Scholar 

  42. Singh, K., Panghal, M., Kadyan, S., Chaudhary, U., & Yadav, J. P. (2014). Green silver nanoparticles of Phyllanthus amarus: as an antibacterial agent against multi drug resistant clinical isolates of Pseudomonas aeruginosa. Journal of Nanobiotechnology, 12, 40.

    Article  Google Scholar 

  43. Rani, R., Sharma, D., Chaturvedi, M., & Yadav, J. P. (2017). Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus. Journal Nanomed Nanotechnol, 8, 457.

    Article  Google Scholar 

  44. Suzuki, T., Fujikura, K., Higashiyam, T., & Takata, K. (1997). DNA staining for fluorescence and laser confocal microscopy. The Journal of Histochemistry and Cytochemistry, 45, 49–53.

    Article  Google Scholar 

  45. Kalishwaralal, K., Barath Mani Kanth, S., Pandian, S. R. K., Deepak, V., & Gurunathan, S. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces. B, Biointerfaces, 79, 340–344.

    Article  Google Scholar 

  46. Ansari, M. A., Khan, H. M., Khan, A. A., Cameotra, S. S., & Pal, R. (2013). Antibiofilm efficacy of silver nanoparticles against biofilm of extended spectrum b-lactamase isolates of Escherichia coli and Klebsiella pneumoniae. Applied Nanoscience, 4, 859–868.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge AIRF, Jawaharlal Nehru University, New Delhi, India, for the CLSM and to All India Institute Medical Sciences New Delhi, for providing the research facilities, for recording TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Ghazanfar Ali.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.G., Ansari, M.A., Khan, H.M. et al. Antibacterial and Antibiofilm Potential of Green Synthesized Silver Nanoparticles against Imipenem Resistant Clinical Isolates of P. aeruginosa. BioNanoSci. 8, 544–553 (2018). https://doi.org/10.1007/s12668-018-0505-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0505-8

Keywords

Navigation