Skip to main content
Log in

Green Phytosynthesis of Silver Nanoparticles Using Echinochloa stagnina Extract with Reference to Their Antibacterial, Cytotoxic, and Larvicidal Activities

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Herein, we report a novel green phytosynthesis for silver nanoparticles (AgNPs) using Echinochloa stagnina (Retz.) P. Beauv. (Burgu) extract and assess their potential activities. The phytosynthesized AgNPs were characterized using UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform infrared (FTIR) spectroscopy. The surface plasmon resonance was peaked at 405 nm indicating the formation of AgNPs. Morphologically, AgNPs were spherical in shape with a diameter of 30 nm and monodispersed. Structurally, XRD data indicated that AgNPs were highly nanocrystalline in nature. FTIR spectral analysis demonstrated the presence of phytochemicals which could be responsible for the reduction of Ag ions and capping of AgNPs. The phytosynthesized AgNPs showed antibacterial activity with MIC of 12.5 and 6.25 μg/mL against multidrug-resistant (MDR) Klebsiella oxytoca (ATCC 51983) and Pseudomonas aeruginosa (ATCC MP-23), respectively. The time-kill kinetics profile of AgNPs against MDR Klebsiella oxytoca (ATCC 51983) and Pseudomonas aeruginosa (ATCC MP-23) revealed a time- and dose-dependent reduction manner. The inhibition concentrations of AgNPs that inhibits 50% (IC50) of Vero and HepG2 cells were 89.01 and 35.1 μg/mL, respectively. The LC50 and LC90 concentrations were (87.669 and 538.017 mg/mL) for Anopheles pharoensis and (51.338 and 311.227 mg/mL) for Culex pipiens, respectively. Collectively, our data suggest that plant-mediated synthesis of AgNPs is more feasible to synthesis AgNPs with improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elegbede, J. A., & Lateef, A. (2019). Green synthesis of silver (Ag), gold (Au) and silver-gold (Ag-Au) alloy nanoparticles: a review on recent advances, trends, and biomedical applications. Nanotechnology and Nanomaterial Applications in Food, Health, and Biomedical Sciences, 23, 3–89. https://doi.org/10.1201/9780429425660-1.

    Article  Google Scholar 

  2. Lateef, A., Elegbede, J. A., Akinola, P. O., & Ajayi, V. A. (2019). Biomedical applications of green synthesized-metallic nanoparticles: a review. Pan Afr. J. Life Sci, 3, 157–182. https://doi.org/10.36108/pajols/9102/30(0170).

    Article  Google Scholar 

  3. Lateef, A., Ojo, S. A., Elegbede, J. A., Akinola, P. O., & Akanni, E. O. (2018). Nanomedical applications of nanoparticles for blood coagulation disorders. Environmental Nanotechnology, pp., 243–277. https://doi.org/10.1007/978-3-319-76090-2_8.

  4. Zhang, S., Tang, Y., & Vlahovic, B. (2016). A review on preparation and applications of silver-containing nanofibers. Nanoscale Research Letters, 11(1), 80. https://doi.org/10.1186/s11671-016-1286-z.

    Article  Google Scholar 

  5. Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174.

    Article  Google Scholar 

  6. Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278–7308. https://doi.org/10.3390/ma8115377.

    Article  Google Scholar 

  7. Rajeshkumar, S., & Bharath, L. V. (2017). Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity. Chemico-Biological Interactions, 273, 219–227. https://doi.org/10.1016/j.cbi.2017.06.019.

    Article  Google Scholar 

  8. Fahimirad, S., Ajalloueian, F., & Ghorbanpour, M. (2019). Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts. Ecotoxicology and Environmental Safety, 168, 260–278. https://doi.org/10.1016/j.ecoenv.2018.10.017.

    Article  Google Scholar 

  9. Chand, K., Cao, D., Fouad, D. E., Shah, A. H., Dayo, A. Q., Zhu, K., Lakhan, M. N., Mehdi, G., & Dong, S. (2020). Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2020.01.009.

  10. Brusotti, G., Cesari, I., Dentamaro, A., Caccialanza, G., & Massolini, G. (2014). Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. Journal of Pharmaceutical and Biomedical Analysis, 87, 218–228. https://doi.org/10.1016/j.jpba.2013.03.007.

    Article  Google Scholar 

  11. Choudhury, R., Majumder, M., Roy, D. N., Basumallick, S., & Misra, T. K. (2016). Phytotoxicity of Ag nanoparticles prepared by biogenic and chemical methods. International Nano Letters, 6(3), 153–159. https://doi.org/10.1007/s40089-016-0181-z.

    Article  Google Scholar 

  12. Adelere, I. A., & Lateef, A. (2016). A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotechnology Reviews, 5(6), 567–587. https://doi.org/10.1515/ntrev-2016-0024.

    Article  Google Scholar 

  13. Ado, M. N., Guero, Y., Michot, D., Soubeiga, B., Kiesse, T. S., & Walter, C. (2016). Phytodesalinization of irrigated saline Vertisols in the Niger Valley by Echinochloa stagnina. Agricultural Water Management, 177, 229–240. https://doi.org/10.1016/j.agwat.2016.07.024.

    Article  Google Scholar 

  14. Brink, M. (2006). Echinochloa stagnina (Retz.) P. Beauv. In M. Brink & G. Belay (Eds.), PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale). Netherlands: Wageningen.

    Google Scholar 

  15. Abo-State, M. A., Mahdy, H. M., Ezzat, S. M., Abd El Shakour, E. H., & El-Bahnasawy, M. A. (2012). Antimicrobial resistance profiles of Enterobacteriaceae isolated from Rosetta Branch of river Nile, Egypt. World Applied Sciences Journal, 19(9), 1234–1243. https://doi.org/10.5829/idosi.wasj.2012.19.09.2785.

    Article  Google Scholar 

  16. Ezzat, S. M., Abo-State, M. A., Mahdy, H. M., & Abd EL-Shakour, E.H. and El-Bahnasawy, M.A. (2014). The effect of ionizing radiation on multi-drug resistant Pseudomonas aeruginosa isolated from aquatic environments in Egypt. British Microbiology Research Journal, 4(8), 856–868. https://doi.org/10.9734/BMRJ/2014/7606.

    Article  Google Scholar 

  17. Boateng, J., & Catanzano, O. (2020). Silver and silver nanoparticle-based antimicrobial dressings. Therapeutic Dressings and Wound Healing Applications, pp.157-184. https://doi.org/10.1002/9781119433316.ch8.

  18. Bernhard, L., Bernhard, P., & Magnussen, P. (2003). Management of patients with lymphoedema caused by filariasis in North-eastern Tanzania: alternative approaches. Physiotherapy, 89(12), 743–749. https://doi.org/10.1016/S0031-9406(05)60500-7.

    Article  Google Scholar 

  19. Benelli, G., & Beier, J. C. (2017). Current vector control challenges in the fight against malaria. Acta Tropica, 174, 91–96. https://doi.org/10.1016/j.actatropica.2017.06.028.

    Article  Google Scholar 

  20. Lateef, A., Ojo, S. A., Akinwale, A. S., Azeez, L., Gueguim-Kana, E. B., & Beukes, L. S. (2015). Biogenic synthesis of silver nanoparticles using cell-free extract of Bacillus safensis LAU 13: antimicrobial, free radical scavenging and larvicidal activities. Biologia, 70(10), 1295–1306. https://doi.org/10.1515/biolog-2015-0164.

    Article  Google Scholar 

  21. Lateef, A., Azeez, M. A., Asafa, T. B., Yekeen, T. A., Akinboro, A., Oladipo, I. C., Azeez, L., Ojo, S. A., Gueguim-Kana, E. B., & Beukes, L. S. (2016). Cocoa pod extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. Journal of Nanostructure in Chemistry, 6(2), 159–169. https://doi.org/10.1007/s40097-016-0191-4.

    Article  Google Scholar 

  22. Azeez, M. A., Lateef, A., Asafa, T. B., Yekeen, T. A., Akinboro, A., Oladipo, I. C., Gueguim-Kana, E. B., & Beukes, L. S. (2017). Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. Journal of Cluster Science, 28(1), 149–164. https://doi.org/10.1007/s10876-016-1055-2.

    Article  Google Scholar 

  23. Aina, D. A., Owolo, O., Lateef, A., Aina, F. O., Hakeem, A. S., Adeoye-Isijola, M., Okon, V., Asafa, T. B., Elegbede, J. A., Olukanni, O. D., & Adediji, I. (2019). Biomedical applications of Chasmanthera dependens stem extract mediated silver nanoparticles as antimicrobial, antioxidant, anticoagulant, thrombolytic, and larvicidal agents. Karbala International Journal of Modern Science, 5(2), 71–80. https://doi.org/10.33640/2405-609X.1018.

    Article  Google Scholar 

  24. Thiyagarajan, P., Kumar, P., Kovendan, K., & Murugan, K. (2014). Effect of medicinal plant and microbial insecticides for the sustainable mosquito vector control. Acta Biologica Indica., 3(1), 527–535.

    Google Scholar 

  25. Benelli, G., Caselli, A., & Canale, A. (2017). Nanoparticles for mosquito control: challenges and constraints. Journal of King Saud University-Science., 29(4), 424–435. https://doi.org/10.1016/j.jksus.2016.08.006.

    Article  Google Scholar 

  26. Govindarajan, M., Rajeswary, M., Muthukumaran, U., Hoti, S. L., Khater, H. F., & Benelli, G. (2016). Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. Journal of Photochemistry and Photobiology B: Biology, 161, 482–489. https://doi.org/10.1016/j.jphotobiol.2016.06.016.

    Article  Google Scholar 

  27. Theerthavathy, B.S., Arakhanum, S., Kumar, B.R. and Kiran, S.R., 2019. Anti-oxidant and anti-microbial activities of silver nanoparticles of essential oil extracts from leaves of Zanthoxylum ovalifolium. European Journal of Medicinal Plants, pp.1-11. https://doi.org/10.9734/ejmp/2019/v29i330157

  28. Travnickova, E., Mikula, P., Oprsal, J., Bohacova, M., Kubac, L., Kimmer, D., Soukupova, J., & Bittner, M. (2019). Resazurin assay for assessment of antimicrobial properties of electrospun nanofiber filtration membranes. AMB Express, 9(1), 183. https://doi.org/10.1186/s13568-019-0909-z.

    Article  Google Scholar 

  29. Shehabeldine, A., & Hasanin, M. (2019). Green synthesis of hydrolyzed starch–chitosan nano-composite as drug delivery system to gram negative bacteria. Environmental Nanotechnology, Monitoring & Management, 12, 100252. https://doi.org/10.1016/j.enmm.2019.100252.

    Article  Google Scholar 

  30. Keepers, T. R., Gomez, M., Celeri, C., Nichols, W. W., & Krause, K. M. (2014). Bactericidal activity, absence of serum effect, and time-kill kinetics of ceftazidime-avibactam against β-lactamase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 58(9), 5297–5305. https://doi.org/10.1128/AAC.02894-14.

    Article  Google Scholar 

  31. Farag, M. M., Moghannem, S. A., Shehabeldine, A. M., & Azab, M. S. (2020). Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microbial Pathogenesis, 140, 103947. https://doi.org/10.1016/j.micpath.2019.103947.

    Article  Google Scholar 

  32. Medda, S., Hajra, A., Dey, U., Bose, P., & Mondal, N. K. (2015). Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience, 5(7), 875–880. https://doi.org/10.1007/s13204-014-0387-1.

    Article  Google Scholar 

  33. Singh, A., Dar, M. Y., Joshi, B., Sharma, B., Shrivastava, S., & Shukla, S. (2018). Phytofabrication of silver nanoparticles: novel drug to overcome hepatocellular ailments. Toxicology Reports, 5, 333–342. https://doi.org/10.1016/j.toxrep.2018.02.013.

    Article  Google Scholar 

  34. Chouhan, S., & Guleria, S. (2020). Green synthesis of AgNPs using Cannabis sativa leaf extract: characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Materials Science for Energy Technologies. https://doi.org/10.1016/j.mset.2020.05.004.

  35. Jacob, S. J. P., Finub, J. S., & Narayanan, A. (2012). Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids and Surfaces B: Biointerfaces, 91, 212–214. https://doi.org/10.1016/j.colsurfb.2011.11.001.

    Article  Google Scholar 

  36. Dakshayani, S. S., Marulasiddeshwara, M. B., Kumar, S., Golla, R., Devaraja, S. R. H. K., & Hosamani, R. (2019). Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract. International Journal of Biological Macromolecules, 131, 787–797. https://doi.org/10.1016/j.ijbiomac.2019.01.222.

    Article  Google Scholar 

  37. Pirtarighat, S., Ghannadnia, M., & Baghshahi, S. (2019). Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry, 9(1), 1–9. https://doi.org/10.1007/s40097-018-0291-4.

    Article  Google Scholar 

  38. Ahmad, A., Syed, F., Shah, A., Khan, Z., Tahir, K., Khan, A. U., & Yuan, Q. (2015). Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Advances, 5(90), 73793–73806. https://doi.org/10.1039/C5RA13206A.

    Article  Google Scholar 

  39. Prasannaraj, G., Sahi, S. V., Ravikumar, S., & Venkatachalam, P. (2016). Enhanced cytotoxicity of biomolecules loaded metallic silver nanoparticles against human liver (HepG2) and prostate (PC3) cancer cell lines. Journal of Nanoscience and Nanotechnology, 16(5), 4948–4959. https://doi.org/10.1166/jnn.2016.12336.

    Article  Google Scholar 

  40. Elmusa, F., Aygun, A., Gulbagca, F., Seyrankaya, A., Göl, F., Yenikaya, C., & Sen, F. (2020). Investigation of the antibacterial properties of silver nanoparticles synthesized using Abelmoschus esculentus extract and their ceramic applications. International Journal of Environmental Science and Technology, pp.1-12. https://doi.org/10.1007/s13762-020-02883-x.

  41. El-Seedi, H. R., El-Shabasy, R. M., Khalifa, S. A., Saeed, A., Shah, A., Shah, R., Iftikhar, F. J., Abdel-Daim, M. M., Omri, A., Hajrahand, N. H., & Sabir, J. S. (2019). Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Advances, 9(42), 24539–24559. https://doi.org/10.1039/C9RA02225B.

    Article  Google Scholar 

  42. Elbahnasawy, M. A., Shehabeldine, A. M., Khattab, A. M., Amin, B. H., & Hashem, A. H. (2021). Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: characterization and anticandidal activity (p. 102401). Journal of Drug Delivery Science and Technology. https://doi.org/10.1016/j.jddst.2021.102401.

  43. Anjugam, M., Vaseeharan, B., Iswarya, A., Divya, M., Prabhu, N. M., & Sankaranarayanan, K. (2018). Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential. Microbial Pathogenesis, 115, 31–40. https://doi.org/10.1016/j.micpath.2017.12.003.

    Article  Google Scholar 

  44. Rajivgandhi, G. N., Ramachandran, G., Maruthupandy, M., Manoharan, N., Alharbi, N. S., Kadaikunnan, S., Khaled, J. M., Almana, T. N., & Li, W. J. (2020). Anti-oxidant, anti-bacterial and anti-biofilm activity of biosynthesized silver nanoparticles using Gracilaria corticata against biofilm producing K. pneumoniae. Colloids and Surfaces A: Physicochemical and Engineering Aspects, p.124830. https://doi.org/10.1016/j.colsurfa.2020.124830.

  45. Shehabeldine, A. M., Ashour, R. M., Okba, M. M., & Saber, F. R. (2020). Callistemon citrinus bioactive metabolites as new inhibitors of methicillin-resistant Staphylococcus aureus biofilm formation. Journal of Ethnopharmacology, 254, 112669. https://doi.org/10.1016/j.jep.2020.112669.

    Article  Google Scholar 

  46. Caleffi-Ferracioli, K. R., Maltempe, F. G., Siqueira, V. L. D., & Cardoso, R. F. (2013). Fast detection of drug interaction in Mycobacterium tuberculosis by a checkerboard resazurin method. Tuberculosis, 93(6), 660–663. https://doi.org/10.1016/j.tube.2013.09.001.

    Article  Google Scholar 

  47. Das, P., Bose, M., Ganguly, S., Mondal, S., Das, A. K., Banerjee, S., & Das, N. C. (2017). Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Nanotechnology, 28(19), p.195501. https://doi.org/10.1088/1361-6528/aa6714.

  48. Cavassin, E. D., de Figueiredo, L. F. P., Otoch, J. P., Seckler, M. M., de Oliveira, R. A., Franco, F. F., Marangoni, V. S., Zucolotto, V., Levin, A. S. S., & Costa, S. F. (2015). Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of nanobiotechnology, 13(1), p.64. https://doi.org/10.1186/s12951-015-0120-6.

  49. WHO 2019: Mosquito-borne diseases. Available from: https://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/

  50. Sutthanont, N., Attrapadung, S., & Nuchprayoon, S. (2019). Larvicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against Culex quinquefasciatus. Insects, 10(1), p.27. https://doi.org/10.3390/insects10010027.

  51. Saini, H., Yadav, R., Kumar, D., Kumar, G., & Agrawal, V. (2020). Cullen corylifolium (L.) Medik. Seed extract, an excellent system for fabrication of silver nanoparticles and their multipotency validation against different mosquito vectors and human cervical cancer cell line. Journal of Cluster Science, 31(1), 161–175. https://doi.org/10.1007/s10876-019-01630-8.

    Article  Google Scholar 

  52. Cetin, H., Cinbilgel, I., Yanikoglu, A., & Gokceoglu, M. (2006). Larvicidal activity of some Labiatae (Lamiaceae) plant extracts from Turkey. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives., 20(12), 1088–1090. https://doi.org/10.1002/ptr.2004.

    Article  Google Scholar 

  53. Bhuvaneswari, R., Xavier, R. J., & Arumugam, M. (2016). Larvicidal property of green synthesized silver nanoparticles against vector mosquitoes (Anopheles stephensi and Aedes aegypti). Journal of King Saud University-Science., 28(4), 318–323. https://doi.org/10.1016/j.jksus.2015.10.006.

    Article  Google Scholar 

  54. Amarasinghe, L. D., Wickramarachchi, P. A. S. R., Aberathna, A. A. A. U., Sithara, W. S., & De Silva, C. R. (2020). Comparative study on larvicidal activity of green synthesized silver nanoparticles and Annona glabra (Annonaceae) aqueous extract to control Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Heliyon., 6(6), e04322. https://doi.org/10.1016/2Fj.heliyon.2020.e04322.

  55. Rajakumar, G., & Rahuman, A. A. (2011). Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Tropica, 118(3), 196–203. https://doi.org/10.1016/j.actatropica.2011.03.003.

    Article  Google Scholar 

  56. Sareen, S.J., Pillai, R.K., Chandramohanakumar, N. and Balagopalan, M., 2012. Larvicidal potential of biologically synthesised silver nanoparticles against Aedes Albopictus. Res J Rec Sci, 1(ISC-2011), pp.52-56

  57. Rajkumar, R., Shivakumar, M. S., Nathan, S. S., & Selvam, K. (2018). Pharmacological and larvicidal potential of green synthesized silver nanoparticles using Carmona retusa (Vahl) Masam leaf extract. Journal of Cluster Science, 29(6), 1243–1253. https://doi.org/10.1007/s10876-018-1443-x.

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa A. Elbahnasawy.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shehabeldine, A.M., Elbahnasawy, M.A. & Hasaballah, A.I. Green Phytosynthesis of Silver Nanoparticles Using Echinochloa stagnina Extract with Reference to Their Antibacterial, Cytotoxic, and Larvicidal Activities. BioNanoSci. 11, 526–538 (2021). https://doi.org/10.1007/s12668-021-00846-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00846-1

Keywords

Navigation