Skip to main content
Log in

Non-platinum Carbon-Supported Oxygen Reduction Catalyst Ink Evaluation Based on Poly(sulfone) and Poly(phenylene)-Derived Ionomers in Alkaline Media

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Described in this work is an electrochemical evaluation of novel alkaline ionomers employed as catalyst binder for non-platinum group metal electrocatalysts based on cyanamide precursor. Electrochemical evaluation of the non-platinum group metal (non-PGM) catalyst bound with the featured alkaline ionomer classes over a range of conditions gives insight into how they behave, as well as provide information on how the varying functionalities enhance or inhibit the rate of oxygen reduction. We are showing that the polymer backbone structure has a larger influence on facilitating favorable reaction kinetics than ionomer to catalysts ratio. The poly(sulfone)-derived ionomers result in a worse activity than electrocatalysts with Nafion® and poly(phenylene)-derived ionomers. They also exhibited more peroxide desorption and greater limitation in the mass transport regime. The poly(phenylene)-derived polymers performed in line with the benchmark ionomer, Nafion®. The poly(phenylene)-derived ionomers show promise as fruitful line of research in establishing an anion-conducting ionomer for alkaline electrolyte fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Damjanovic, V. Brusic, Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochemical Acta 12(6), 615–628 (1967)

    Article  CAS  Google Scholar 

  2. J.R. Varcoe, R.C.T. Slade, G.L. Wright, Y. Chen, Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. J. Phys. Chem. B 110(42), 21041–21049 (2006)

    Article  CAS  Google Scholar 

  3. Y. Wang, L. Li, L. Zhuang, L. Juntao, X. Boqing, A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem. Commun. 5(8), 662–666 (2003)

    Article  CAS  Google Scholar 

  4. J.R. Varcoe, R.C.T. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2), 187–200 (2005)

    Article  CAS  Google Scholar 

  5. D. J. Connolly, and W Franklin-Gresham. Fluorocarbon vinyl ether polymers. United States Patent 3282875. November 1, (1966)

  6. R.S. Yeo, J. McBreen, Transport properties of Nafion membranes in electrochemically regenerative hydrogen/halogen cells. J. Electrochem. Soc. 126(10), 1682–1687 (1979)

    Article  CAS  Google Scholar 

  7. C. Heitner-Wirguin, Recent advances in perfluorinated ionomer membranes: structure, properties, and applications. J. Membr. Sci. 120(1), 1–33 (1996)

    Article  CAS  Google Scholar 

  8. R. Jasinski, A new fuel cell cathode catalyst. Nature 201, 1212–1213 (1964)

    Article  CAS  Google Scholar 

  9. F. Jaouen et al., Cross-laboratory experimental study of non-noble-metal electrocatalysts for oxygen reduction reaction. ACS Applied Material & Interfaces 1(8), 1623–1639 (2009)

    Article  CAS  Google Scholar 

  10. S. Pylyplenko, S. Mukerjee, T. Olson, P. Atanassov, Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochemical Acta 53, 7875–7883 (2008)

    Article  Google Scholar 

  11. S.L. Gojkovic, S. Gupta, R.F. Savinell, Heat-treated iron(III) tetramethoxyphenyl porphyrin supported on high-area carbon as an electrocatalyst for oxygen reduction-I. Characterization of the electrocatalyst. J. Electrochem. Soc. 145, 3493–3499 (1998)

    Article  CAS  Google Scholar 

  12. P. Gouerec, M. Savy, Oxygen reduction electrocatalysis: ageing of pyrolyzed cobalt macrocycles dispersed on an active carbon. Electrochemical Acta 44, 2653–2661 (1999)

    Article  CAS  Google Scholar 

  13. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties (Wiley, New York, 1988)

    Google Scholar 

  14. S.M. Haile, Fuel cell materials and components. Acta Mater. 51, 5981–6000 (2003)

    Article  CAS  Google Scholar 

  15. R.H. Ottewill, J.N. Shaw, Stability of monodisperse polystyrene latex dispersions of various sizes. Discuss of the Faraday Soc. 42, 154–163 (1966)

    Article  Google Scholar 

  16. M.R. Hibbs, M.A. Hickner, T.M. Alam, S.K. McIntyre, C.H. Fujimoto, C.J. Cornelius, Transport Properties of hydroxide and proton conducting membranes. Chem. Mater. 20(7), 2566 (2008)

    Article  CAS  Google Scholar 

  17. Y. Xiong, J. Fang, Q.H. Zeng, L.L. Qing, Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J. Membr. Sci. 311(1–2), 319–325 (2008)

    Article  CAS  Google Scholar 

  18. G. Wang, Y. Weng, C. Deryn, D. Xie, R. Chen, Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications. J. Membr. Sci. 326(1), 4–8 (2009)

    Article  CAS  Google Scholar 

  19. M.R. Hibbs, C.H. Fujimoto, C.J. Cornelius, Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules 42, 8316–8321 (2009)

    Article  CAS  Google Scholar 

  20. M. Hibbs, Christopher J. Cornelius, and C. H. Fujimoto. Poly(phenylene)-based anion exchange membrane. USA Patent 7888397. February 15, (2011)

  21. L. Wu, T. Xu, Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. J. Membr. Sci. 322(2), 286–292 (2008)

    Article  CAS  Google Scholar 

  22. E.E. Switzer, T. Olson, A.K. Datye, P. Atanassov, M. Hibbs, C.J. Cornelius, Templated Pt–Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media. Electrochemical Acta 54(3), 989–995 (2009)

    Article  CAS  Google Scholar 

  23. S. Litster, G. McLean, PEM fuel cell electrodes. J. Power Sources 130, 61–76 (2004)

    Article  CAS  Google Scholar 

  24. S. Srinvasan, O. A. Velev, A. Parthasarathy, D. J. Manko, and A. J. Appleby. High energy efficiency and high power density proton exchange membrane fuel cells-electrode kinetics and mass transport. J Power Source 36(1), 299–320

  25. T. Hatanaka, N. Hasegawa, A. Kamiya, M. Kawasumi, Y. Morimoto, K. Kawahara, Cell performances of direct methanol fuel cells with grafted membranes. Fuel 81, 2173–2176 (2002)

    Article  CAS  Google Scholar 

  26. J.P. Meyers, R.M. Darling, Model of carbon corrosion in PEM fuel cells. J. Electrochem. Soc. 152(8), A1432–A1442 (2006)

    Article  Google Scholar 

  27. H.T. Chung, C.M. Johnston, K. Artyushkova, M. Ferrandon, D.J. Myers, P. Zelenay, Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochem. Commun. 12, 1792–1795 (2010)

    Article  CAS  Google Scholar 

  28. N.J. Carroll, S. Pylyplenko, P. Atanassov, N.D. Petsev, Hierarchical nano-porous microparticles derived by microemulsion templating. Langmuir 25(23), 13540–13544 (2009)

    Article  CAS  Google Scholar 

  29. S. Pylyplenko, T. Olson, T. Carroll, D.N. Petsev, P. Atanassov, Templated platinum/carbon oxygen reduction fuel cell electrocatalysts. J. Phys. Chem. C 114, 4200–4207 (2010)

    Article  Google Scholar 

  30. J. Yan, M.A. Hickner, Anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s. Macromolecules 43, 2349–2356 (2010)

    Article  CAS  Google Scholar 

  31. A. Parthasarathy, C.R. Martin, S. Srinivasan, Investigations of the O2 reduction reaction at the platinum/Nafion(R) interface using a solid-state electrochemical cell. J. Electrochem. Soc. 138(4), 916–921 (1991)

    Article  CAS  Google Scholar 

  32. D. Song, Q. Wang, Z. Liu, T. Navessin, M. Eikerling, S. Holdcroft, Numerical optimization study of the catalyst layer of PEM fuel cell cathode. J. Power Sources 126, 104–111 (2004)

    Article  CAS  Google Scholar 

  33. A. Ohma, F. Kazuyoshi, K. Okazaki, Influence of Nafion® film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell. Electrochemical Acta 55(28), 8829–8838 (2010)

    Article  CAS  Google Scholar 

  34. F. Jaouen, J.P. Dodelet, Average turn-over frequency of O2 electro-reduction for Fe/N/C and Co/N/C catalysts in PEFCs. Electrochemical Acta 52(19), 5975–5984 (2007)

    Article  CAS  Google Scholar 

  35. A. Bonakdarpour, M. Lefevre, Y. Ruizhi, F. Jaouen, T. Dahn, J.-P. Dodelet, Impact of loading in RRDE experiments on Fe–N–C catalysts: two- or four-electron oxygen reduction? Electrochem. Solid-State Lett. 11(6), B105–B108 (2008)

    Article  CAS  Google Scholar 

  36. S.L.J. Gojković, Oxygen reduction on iron. Temperature dependence of oxygen reduction on passivated iron in alkaline solutions. J. Electroanal. Chem. 399(1–2), 127 (1995)

    Article  Google Scholar 

  37. A. Parthasarathy, S. Supramaniam, J. Appleby, Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface—a microelectrode investigation. J. Electrochem. Soc. 139(9), 2530–2537 (1992)

    Article  CAS  Google Scholar 

  38. T. Olson, S. Pylyplenko, P. Atanassov, K. Asazawa, K. Yamada, H. Tanaka, Anion-exchange membrane fuel cells: dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt-polypyrrole electrocatalysts. J. Phys. Chem. C 114, 5049–5059 (2010)

    Article  CAS  Google Scholar 

  39. M.H. Robson, A. Serov, K. Artyushkova, P. Atanassov, A mechanistic study of 4-aminoantipyrine and iron derived non-platinum group metal catalyst on the oxygen reduction reaction. Electrochim. Acta 90, 656–665 (2013)

    Article  CAS  Google Scholar 

  40. P. Zschocke, D. Quellmalz, Novel ion exchange membranes based on an aromatic polyethersulfone. J. Membr. Sci. 22(2-3), 325–332 (1985)

    Article  CAS  Google Scholar 

  41. C. Fujimoto, D.-S. Kim, M. Hibbs, D. Wrobleski, Y.S. Kim, J. Memb. Sci. 423–424, 438 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateryna Artyushkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robson, M.H., Artyushkova, K., Patterson, W. et al. Non-platinum Carbon-Supported Oxygen Reduction Catalyst Ink Evaluation Based on Poly(sulfone) and Poly(phenylene)-Derived Ionomers in Alkaline Media. Electrocatalysis 5, 148–158 (2014). https://doi.org/10.1007/s12678-013-0179-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0179-5

Keywords

Navigation