Skip to main content
Log in

Analysis of the Corrosion Kinetic of Pt/C Catalysts Prepared on Different Carbon Supports Under the “Start-Stop” Cycling

  • Original Research Article
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A series of 50 wt% Pt/C catalysts based on carbon blacks with different specific surface areas and morphologies was synthesized and investigated using “start-stop” protocol (triangular scan in the 1.0–1.5 V vs. reversible hydrogen electrode (RHE) potential range with a scan rate of 500 mV s−1). The commercial 40 wt% Pt/Vulcan XC-72 and 50 wt% Pt/TEC were used for comparison. The oxygen reduction reaction (ORR) activities and electrochemically active surface area (ECSA) of Pt were obtained at 25 °C in 0.1 M HClO4 electrolyte after every 4000 cycles. All synthesized Pt/C catalysts were characterized by X-ray powder diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), low-temperature nitrogen sorption, CO pulse chemisorption methods, and cycling voltammetry including a rotating disc electrode (RDE) method for analysis of the ORR kinetics. Dependences of the ORR activities, ECSA, and values of Tafel slopes on the number of oxidative cycles were obtained and analyzed in detail. It was shown that the initial values of Tafel slopes of the Pt/C catalysts decrease with increase of the surface area of carbon blacks. The increase in the values of Tafel slopes in the high-current density region with cycling was associated with the degradation of carbon support. The reciprocal ratios of the ECSA to initial values were found to grow linearly on the number of cycles. The ORR surface activity was significantly decreased in the first 8000–10,000 oxidation cycles as the result of changes of the active component and carbon support degradation. The following slight increase in the ORR surface activities with cycling was related to the increase in the Pt particle sizes in the Pt/C catalysts. Modification of Ketjen black EC 600 DJ through pyrocarbon deposition (KB600-C sample) led to appreciable increase of the stability of the Pt/KB600-C sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.-Z. Yuan, H. Li, S. Zhang, J. Martin, H. Wang, J. Power Sources 196, 9107 (2011)

    Article  CAS  Google Scholar 

  2. S. Zhang, X. Yuan, H. Wang, W. Merida, H. Zhu, J. Shen, S. Wu, J. Zhang, Int. J. Hydrog Energy 34, 388 (2009)

    Article  CAS  Google Scholar 

  3. S. Zhang, X. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich, M. Schulze, J. Power Sources 194, 588 (2009)

    Article  CAS  Google Scholar 

  4. L. Dubau, L. Castanheira, F. Maillard, M. Chatenet, O. Lottin, G. Maranzana, J. Dillet, A. Lamibrac, J.-C. Perrin, E. Moukheiber, A. ElKaddouri, G. De Moor, C. Bas, L. Flandin, N. Caqué, WIREs Energy Environ. 3, 540 (2014)

    Article  CAS  Google Scholar 

  5. A. Ohma, K. Shinohara, A. Iiyama, T. Yoshida, A. Daimaru, ECS Trans. 41, 775 (2011)

    Article  CAS  Google Scholar 

  6. P. Costamagna, S. Srinivasan, J. Power Sources 102, 242 (2001)

    Article  CAS  Google Scholar 

  7. H.A. Gasteiger, S.S. Kocha, B. Sompalli, F.T. Wagner, Appl. Catal. B Environ. 56, 9 (2005)

    Article  CAS  Google Scholar 

  8. J. Sinha, S. Lasher, Y. Yang, L.L.C. Tiax, Direct hydrogen PEMFC manufacturing cost estimation for automotive applications (DoE Hydrogen Program Annual Merit Review and Peer Evaluation Meeting, Arlington, 2009)

    Google Scholar 

  9. B. James, J. Kalinoski, Mass-production cost estimation of automotive fuel cell systems (DoE Hydrogen Program Annual Merit Review and Peer Evaluation Meeting, Arlington, 2009)

    Google Scholar 

  10. C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D.L. Yang, M.L. Perry, T.D. Jarvi, Electrochem. Solid-State Lett. 8, A273 (2005)

    Article  CAS  Google Scholar 

  11. W.R. Baumgartner, P. Parz, S.D. Fraser, E. Wallnofer, V. Hacker, J. Power Sources 182, 413 (2008)

    Article  CAS  Google Scholar 

  12. F.A. de Bruijn, V.A.T. Dam, G.J.M. Janssen, Fuel Cells 8, 3 (2008)

    Article  Google Scholar 

  13. Y. Shao-Horn, W.C. Sheng, S. Chen, P.J. Ferreira, E.F. Holby, D. Morgan, Top. Catal. 46, 285 (2007)

    Article  CAS  Google Scholar 

  14. A. Marcu, G. Toth, S. Kundu, L.C. Colmenares, R.J. Behm, J. Power Sources 215, 266 (2012)

    Article  CAS  Google Scholar 

  15. M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions (Pergamon Press, Oxford, 1966)

    Google Scholar 

  16. Y. Shao-Horn, P. Ferreira, G.J. Io, D. Morgan, H. Gasteiger, R. Makharia, ECS Trans. 1, 185 (2006)

    Article  CAS  Google Scholar 

  17. A. Zana, J. Speder, M. Roefzaad, L. Altmann, M. Baumer, M. Arenz, J. Electrochem. Soc. 160, F608 (2013)

    Article  CAS  Google Scholar 

  18. F. Ettingshausen, J. Kleemann, A. Marcu, G. Toth, H. Fuess, C. Roth, Fuel Cells 11, 238 (2011)

    Article  CAS  Google Scholar 

  19. H. Schulenburg, B. Schwanitz, J. Krbanjevic, N. Linse, G.G. Scherer, A. Wokaun, Electrochem. Commun. 13, 921 (2011)

    Article  CAS  Google Scholar 

  20. J. Kang, D.W. Jung, S. Park, J.-H. Lee, J. Ko, J. Kim, Int. J. Hydrog Energy 35, 3727 (2010)

    Article  CAS  Google Scholar 

  21. Z. Siroma, K. Ishii, K. Yasuda, M. Inaba, A. Tasaka, J. Power Sources 171, 524 (2007)

    Article  CAS  Google Scholar 

  22. S.C. Ball, S.L. Hudson, D. Thompsett, B. Theobald, J. Power Sources 17, 18 (2007)

    Article  Google Scholar 

  23. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, J. Power Sources 176, 444 (2008)

    Article  CAS  Google Scholar 

  24. E. Niangar, T. Han, N. Dale, K. Adjemian, ECS Trans. 50, 1599 (2012)

    Article  Google Scholar 

  25. J.C. Meier, C. Galeano, I. Katsounaros, A.A. Topalov, A. Kostka, F. Schueth, K.J.J. Mayrhofer, ACS Catal. 2, 832 (2012)

    Article  CAS  Google Scholar 

  26. J.C. Meier, I. Katsounaros, C. Galeano, H.J. Bongard, A.A. Topalov, A. Kostka, A. Karschin, F. Schuth, K.J.J. Mayrhofer, Energy Environ. Sci. 5, 9319 (2012)

    Article  CAS  Google Scholar 

  27. X. Zhao, H. Hayashi, Z. Noda, K. Kimijima, I. Yagi, K. Sasaki, Electrochim. Acta 97, 33 (2013)

    Article  CAS  Google Scholar 

  28. X. Zhao, A. Hayashi, Z. Noda, K. Sasaki, ECS Trans. 58, 7 (2014)

    Article  Google Scholar 

  29. X. Zhao, A. Hayashi, Z. Noda, K. Sasaki, ECS Trans. 53, 23 (2013)

    Article  Google Scholar 

  30. L. Castanheira, W.O. Silva, F.H.B. Lima, A. Crisci, L. Dubau, F. Maillard, ACS Catal. 5, 2184 (2014)

    Article  Google Scholar 

  31. A. Zana, J. Speder, N.E.A. Reeler, T. Vosch, M. Arenz, Electrochim. Acta 114, 455 (2013)

    Article  CAS  Google Scholar 

  32. D.W. Banham, J.N. Soderberg, V.I. Birss, J. Phys. Chem. C 113, 10103 (2009)

    Article  CAS  Google Scholar 

  33. J. Kaiser, P.A. Simonov, V.I. Zaikovskii, C. Hartnig, L. Jörissen, E.R. Savinova, J. Appl. Electrochem. 37, 1429 (2007)

    Article  CAS  Google Scholar 

  34. V.A. Golovin, E.N. Gribov, P.A. Simonov, A.G. Okunev, I.N. Voropaev, A.N. Kuznetsov, A.V. Romanenko, Kinet. Catal. 56, 509 (2015)

    Article  CAS  Google Scholar 

  35. A.P. Karnaukhov, V.B. Fenelonov, V.Y. Gavrilov, Pure Appl. Chem. 61, 1913 (1989)

    Article  CAS  Google Scholar 

  36. V. Rao, P.A. Simonov, E.R. Savinova, G.V. Plaksin, S.V. Cherepanova, G.N. Kryukova, U. Stimming, J. Power Sources 145, 178 (2005)

    Article  CAS  Google Scholar 

  37. I.N. Voropaev, P.A. Simonov, A.V. Romanenko, Russ. J. Inorg. Chem. 54, 1531 (2009)

    Article  Google Scholar 

  38. R.H. Hicks, Q.-J. Yen, A.T. Bell, J. Catal. 89, 498 (1984)

    Article  CAS  Google Scholar 

  39. R. Bacaud, G. Blanchard, H. Charcosset, L. Tournayan, React. Kinet. Catal. Lett. 12, 357 (1979)

    Article  CAS  Google Scholar 

  40. E.N. Gribov, A.Y. Zinovieva, I.N. Voropaev, P.A. Simonov, A.V. Romanenko, A.G. Okunev, Int. J. Hydrog Energy 37, 11894 (2012)

    Article  CAS  Google Scholar 

  41. T.J. Schmidt, H.A. Gasteiger, G.D. Stab, P.M. Urban, D.M. Kolb, R.J. Behm, J. Electrochem. Soc. 14, 2354 (1998)

    Article  Google Scholar 

  42. S. Trasatti, O.A. Petrii, Pure Appl. Chem. 63, 711 (1991)

    Article  CAS  Google Scholar 

  43. J.-B. Donnet, R.C. Bansal, M.-J. Wang, Carbon black. 2nd edit, rev. and expanded, Marcel Dekker, New York, USA, 1993.

  44. A. Cuesta, P. Dhamelincourt, J. Laureyns, A. Martınez-Alonso, J.M.D. Tascon, J. Mater. Chem. 8, 2875 (1998)

    Article  CAS  Google Scholar 

  45. E. Frackowiak, F. Beguin, Carbon 40, 1775 (2002)

    Article  CAS  Google Scholar 

  46. J. Wang, G. Yin, Y. Shao, S. Zhang, Z. Wang, Y. Gao, J. Power Sources 171, 331 (2007)

    Article  CAS  Google Scholar 

  47. C.H. Paik, G.S. Saloka, G.W. Graham, Electrochem. Solid-State Lett. 10, B39 (2007)

    Article  CAS  Google Scholar 

  48. T. Yoda, H. Uchida, M. Watanabe, Electrochim. Acta 52, 5997 (2007)

    Article  CAS  Google Scholar 

  49. E.N. Gribov, A.N. Kuznetzov, V.A. Golovin, I.N. Voropaev, A.V. Romanenko, A.G. Okunev, Russ. J. Electrochem. 50, 700 (2014)

    Article  CAS  Google Scholar 

  50. D.S. Gnanamuthu, J.V. Petrocelli, J. Electrochem. Soc. 114, 1036 (1967)

    Article  CAS  Google Scholar 

  51. A. Damjanovich, V. Brusic, Electrochim. Acta 12, 615 (1967)

    Article  Google Scholar 

  52. D.B. Sepa, M.V. Vojnovic, A. Damjanovic, Electrochim. Acta 26, 781 (1981)

    Article  CAS  Google Scholar 

  53. A. Holewinski, S. Linic, E, J. Electrochem. Soc., 159, H864 (2012).

  54. A. Damjanovic, A. Dey, J.O.M. Bokris, Electrochim. Acta 11, 791 (1966)

    Article  CAS  Google Scholar 

  55. Y.-C. Park, K. Kakinuma, M. Uchida, D.A. Tryk, T. Kamino, H. Uchida, M. Watanabe, Electrochim. Acta 91, 195 (2013)

    Article  CAS  Google Scholar 

  56. H. Schulenburg, B. Schwanitz, N. Linse, G.G. Scherer, A. Wokaun, J. Phys. Chem. C 115, 14236 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Atsushi OHMA and Dr. Masashi ITO, Nissan Research Center, Nissan Motor Co., LTD, 1, Natsushima-cho, Yokosuka-shi, Kanagawa 237-8523, Japan, for the financial support of the article. The work was also supported by RFBR grant no. 13-03-01023, Russian Academy of Science Project Nos. V.46.4.4. and V.46.2.4., and Educational Center for Energy Efficient Catalysis (Novosibirsk State University, Boreskov Institute of Catalysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Gribov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gribov, E.N., Kuznetsov, A.N., Voropaev, I.N. et al. Analysis of the Corrosion Kinetic of Pt/C Catalysts Prepared on Different Carbon Supports Under the “Start-Stop” Cycling. Electrocatalysis 7, 159–173 (2016). https://doi.org/10.1007/s12678-015-0294-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-015-0294-6

Keywords

Navigation