Skip to main content
Log in

Facile Synthesis of Cobalt Oxide Nanoparticles by Thermal Decomposition of Cobalt(II) Carboxamide Complexes: Application as Oxygen Evolution Reaction Electrocatalyst in Alkaline Water Electrolysis

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Cobalt oxide nanoparticles, Co3O4 (1) and Co3O4 (2), have been synthesized by thermal decomposition of [CoII(bqbenzo)] and [CoII(bqb)], respectively. The morphology of these oxides is influenced by the difference in the structure of bqbenzo2− {3,4-bis(2-quinolinecarboxamido) benzophenone and, bqb2− {bis(2-quinolinecarboxamido)-1,2-benzen}, only differing in a benzoyl substituent. The products were characterized by XRD, FE-SEM, and FT-IR spectroscopy. The catalytic activity of the oxides was examined in oxygen evolution reaction (OER) by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Co3O4 oxides (1 and 2) exhibited higher catalytic activity compared to 10 wt% Pt/C in terms of obtained current density at 0.8 V; ∼23.3 versus 6.1 mA cm−2, respectively. However, the aging tests of the two oxides in OER revealed that Co3O4 (1) is more stable than Co3O4 (2). These results demonstrated that the Co3O4 (1) has a superior performance which can be employed in the alkaline water electrolyzer anode.

Co3O4 nanoparticles are synthesized via calcination of [Co(bqbenzo)] and [Co(bqb)] giving Co3O4 (1) and Co3O4 (2), respectively. Both oxides exhibit pronounced oxygen evolution activity compared to 10 wt% Pt/C and Co3O4 (1), with more robust polymorphic structure, exhibits remarkable stability during OER cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Du, R. Eisenberg, Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: recent progress and future challenges. Energy Environ. Sci. 5, 6012–6021 (2012)

    Article  CAS  Google Scholar 

  2. L. Trotochaud, J. K. Ranney, K. N. Williams, S. W. Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012)

    Article  CAS  Google Scholar 

  3. S. M. Barnett, K. I. Goldberg, J. M. Mayer, A soluble copper-bipyridine water-oxidation electrocatalyst. Nat. Chem. 4, 498–502 (2012)

    Article  CAS  Google Scholar 

  4. M. Garcia-Mota, M. Bajdich, V. Viswanathan, A. Vojvodic, A. T. Bell, J. K. Norskov, Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides. J. Phys. Chem. C116, 21077–21082 (2012)

    Google Scholar 

  5. L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012)

    Article  CAS  Google Scholar 

  6. Y. Surendranath, M. W. Kanan, D. G. Nocera, Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010)

    Article  CAS  Google Scholar 

  7. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  Google Scholar 

  8. Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012)

    Article  CAS  Google Scholar 

  9. M. W. Louie, A. T. Bell, An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329–12337 (2013)

    Article  CAS  Google Scholar 

  10. N. H. Chou, P. N. Ross, A. T. Bell, T. D. Tilley, Comparison of cobalt-based nanoparticles as electrocatalysts for water oxidation. ChemSusChem 4, 1566–1569 (2011)

    Article  CAS  Google Scholar 

  11. T. Maiyalagan, K. A. Jarvis, S. Therese, P. J. Ferreira, A. Manthiram, Spinel-type lithium 316 cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen 317 reduction reactions. Nat. Commun. 5(3949), 1–8 (2014)

    Google Scholar 

  12. N. Suzuki, T. Horie, G. Kitahara, M. Murase, K. Shinozaki, Y. Morimoto, Novel noble-metal-free electrocatalyst for oxygen evolution reaction in acidic and alkaline media. Electrocatalysis 7, 115–120 (2016)

    Article  CAS  Google Scholar 

  13. M. Dincă, Y. Surendranath, D. G. Nocera, Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. 107, 10337–10341 (2010)

    Article  Google Scholar 

  14. K. Fominykh, J. M. Feckl, J. Sicklinger, M. Döblinger, S. Böcklein, J. Ziegler, L. Peter, J. Rathousky, E.-W. Scheidt, T. Bein, D. Fattakhova-Rohlfing, Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting. Adv. Funct. Mater. 24, 3123–3129 (2014)

    Article  CAS  Google Scholar 

  15. H. Wang, H.-W. Lee, Y. Deng, Z. Lu, P.-C. Hsu, Y. Liu, D. Lin, Y. Cui, Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6(7261), 1–8 (2015)

    Article  Google Scholar 

  16. R. K. Gupta, A. K. Sinha, B. N. Raja Sekhar, A. K. Srivastava, G. Singh, S. K. Deb, Synthesis and characterization of various phases of cobalt oxide nanoparticles using inorganic precursor. Appl. Phys. A Mater. Sci. Process. 103, 13–19 (2011)

    Article  CAS  Google Scholar 

  17. K. Thangavelu, K. Parameswari, K. Kuppusamy, Y. Haldorai, A simple and facile method to synthesize Co3O4 nanoparticles from metal benzoate dihydrazinate complex as a precursor. Mater. Lett. 65, 1482–1484 (2011)

    Article  CAS  Google Scholar 

  18. M. Goudarzi, M. Bazarganipour, M. Salavati-Niasari, Synthesis, characterization and degradation of organic dye over Co3O4 nanoparticles prepared from new binuclear complex precursors. RSC Adv. 4, 46517–46520 (2014)

    Article  CAS  Google Scholar 

  19. O. Belda, C. Moberg, Bispyridylamides–coordination chemistry and applications in catalytic reactions. Coord. Chem. Rev. 249, 727–740 (2005)

    Article  CAS  Google Scholar 

  20. L. Yang, Z. Wu, L. Liang, X. Zhou, Synthesis, crystal structures and catalytic abilities of new macrocyclic bis-pyridineamido MnIII and FeIII complexes. J. Organomet. Chem. 694, 2421–2426 (2009)

    Article  CAS  Google Scholar 

  21. D. H. Lee, J. H. Lee, B. K. Park, E. Y. Kim, Y. Kim, C. Kim, I. M. Lee, High catalytic activities in the norbornene polymerization with neutral palladium complexes containing N4-type tetradentate chelating ligands. Inorg. Chim. Acta 362, 5097–5102 (2009)

    Article  CAS  Google Scholar 

  22. C. Y. Shi, E. J. Gao, S. Ma, M. L. Wang, Q. T. Liu, Synthesis, crystal structure, DNA-binding and cytotoxicity in vitro of novel cis-Pt(II) and trans-Pd(II) pyridine carboxamide complexes. Bioorg. Med. Chem. 20, 7250–7254 (2010)

    Article  CAS  Google Scholar 

  23. K. Sakai, H. Ozawa, H. Yamada, T. Tsubomura, M. Hara, A. Higuchi, M. A. Haga, A tris(2,2′-bipyridine)ruthenium(II) derivative tethered to a cis-PtCl2(amine)2 moiety: syntheses, spectroscopic properties, and visible-light-induced scission of DNA. J. Chem. Soc. Dalton Trans., 3300–3305 (2006)

  24. R. D. Litto, V. Benessere, F. Ruffo, C. Moberg, Carbohydrate-based pyridine-2-carboxamides for Mo-catalyzed asymmetric allylic alkylations. Eur. J. Org. Chem., 1352–1356 (2009)

  25. R. Ramachandran, P. Viswanathamurthi, Ruthenium(II) carbonyl complexes containing pyridine carboxamide ligands and PPh3/AsPh3/Py coligands: synthesis, spectral characterization, catalytic and antioxidant studies. Spectrochim. Acta Part A 103, 53–61 (2013)

    Article  CAS  Google Scholar 

  26. D. N. Lee, J. Y. Ryu, H. Kwak, Y. M. Lee, S. H. Lee, J. I. Poong, J. Lee, W. Shin, C. Kim, S. J. Kim, Y. Kim, Steric effect on construction of Cu(II) complexes with pyridine carboxamide ligands. J. Mol. Struct. 885, 56–63 (2008)

    Article  CAS  Google Scholar 

  27. A. A. Eroy-Reveles, Y. Leung, C. M. Beavers, M. M. Olmstead, P. K. Mascharak, Near-infrared light activated release of nitric oxide from designed photoactive manganese nitrosyls: strategy, design, and potential as NO donors. J. Am. Chem. Soc. 130, 4447–4458 (2008)

    Article  CAS  Google Scholar 

  28. H. A. Zamani, R. Kamjoo, M. Mohammadhosseini, M. Zaferoni, Z. Rafati, M. R. Ganjali, Farnoush Faridbod, Soraia Meghdadi, Europium(III) PVC membrane sensor based on N-pyridine-2-carboxamido-8-aminoquinoline as a sensing material. Mater. Sci. Eng. C 32, 447–451 (2012)

    Article  CAS  Google Scholar 

  29. S. Meghdadi, K. Mereiter, M. Amirnasr, F. Karimi, A. Amiri, Synthesis, crystal structure and electrochemistry of cobalt(III) carboxamide complexes with amine and azide ancillary ligands. Polyhedron 68, 60–69 (2014)

    Article  CAS  Google Scholar 

  30. S. Meghdadi, M. Amirnasr, A. Amiri, Z. Musavizadeh Mobarakeh, Z. Azarkamanzad, Benign synthesis of N-(8-quinolyl pyridine-2-carboxamide) ligand (Hbpq), and its Ni(II) and Cu(II) complexes. A fluorescent probe for direct detection of nitric oxide in acetonitrile solution based on Hbpq copper(II) acetate interaction. C. R. Chim 17, 477–483 (2014)

    Article  CAS  Google Scholar 

  31. S. Meghdadi, M. Amirnasr, A. Amiri, Z. Azarkamanzad, K. Schenk Joβ, F. Fadaee, A. Amiri, S. Abbasi, Benign synthesis of the unsymmetrical ligand N-(quinolin-8-yl) pyrazine-2-carboxamide. Preparation, electrochemistry, antibacterial activity, and crystal structures of Cu(II) and Zn(II) complexes. J. Coord. Chem. 66, 4330–4343 (2013)

    Article  CAS  Google Scholar 

  32. M. Salavati-Niasari, F. Davar, M. Mazaheri, M. Shaterian, Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]–oleylamine complex by thermal decomposition. J. Magn. Magn. Mater. 320, 575–578 (2008)

    Article  CAS  Google Scholar 

  33. M. Herrero, P. Benito, F. M. Labajos, V. Rives, Nanosize cobalt oxide-containing catalysts obtained through microwave-assisted methods. Catal. Today 128, 129–137 (2007)

    Article  CAS  Google Scholar 

  34. R. Jenkins, R. L. Snyder, Chemical analysis: introduction to X-ray powder diffractometry (Wiley, Inc., New York, 1996), p. 90

    Book  Google Scholar 

  35. X. Wu, K. Scott, A Li-doped Co3O4 oxygen evolution catalyst for nonprecious metal alkaline anion exchange membrane water electrolysers. Int. J. Hydrogen Energ. 38, 3123–3129 (2013)

    Article  CAS  Google Scholar 

  36. B. Chi, H. Lin, J. Li, Cations distribution of CuxCo3-xO4 and its electrocatalytic activities for oxygen evolution reaction. Int. J. Hydrogen Energ. 33, 4763–4768 (2008)

    Article  CAS  Google Scholar 

  37. M. Hamdani, R. N. Singh, P. Chartier, Co3O4 and Co-based spinel oxides bifunctional oxygen electrodes. Int. J. Electrochem. Sci. 5, 556–577 (2010)

    CAS  Google Scholar 

  38. Y.-C. Liu, J. A. Kza, J. A. Switzer, Conversion of electrodeposited Co(OH) to CoOOH and Co3O4, and comparison of their catalytic activity for the oxygen evolution reaction. Electrochim. Acta 140, 359–365 (2014)

    Article  CAS  Google Scholar 

  39. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, H. Dai, Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nature Mater. 10, 780–786 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Partial support of this work by the Isfahan University of Technology Research Council and the Iranian Nano Technology Initiative Council is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soraia Meghdadi or Mehdi Amirnasr.

Electronic Supplementary Material

ESM 1

(DOCX 789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meghdadi, S., Amirnasr, M., Zhiani, M. et al. Facile Synthesis of Cobalt Oxide Nanoparticles by Thermal Decomposition of Cobalt(II) Carboxamide Complexes: Application as Oxygen Evolution Reaction Electrocatalyst in Alkaline Water Electrolysis. Electrocatalysis 8, 122–131 (2017). https://doi.org/10.1007/s12678-016-0345-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0345-7

Keywords

Navigation