Skip to main content
Log in

Nanohexagonal Fe2O3 Electrode for One-Step Selective Monitoring of Dopamine and Uric Acid in Biological Samples

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Fabrication of nonenzymatic biosensors based on the nanomaterials for highly sensitive and selective detection of single or multiple molecules coexisting in one biological sample is extremely challenging. Design of the hierarchical nanohexagonal Fe2O3 platelets (HFP) via one-pot hydrothermal treatment was employed for selective signaling of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA) with high sensitivity. Electrode design with the nanosized structure of parallel hexagonal platelets (20–40 nm), high surface area, multiactive site, smooth surface, and pore distribution inside/outside the surfaces renders excellent sensitivity and selectivity of DA and UA during the catalytic oxidation process. Simultaneous monitoring and selective signaling of DA and UA were successfully achieved by HFP with detection limits as low as 16 nM and 0.218 μM with a wide linear range from 1 to 200 μM and from 20 to 400 μM for DA and UA, respectively. HFP provides high stability and reproducibility with relative standard deviations in the range of 2.5–5.29% to monitor DA and UA. Furthermore, continuous monitoring of DA and UA in real human saliva/serum samples was realized with high sensitivity and selectivity. The designed HFP can be employed as a nonenzymatic biosensor for simultaneous detection of mono-bioactive molecules in the biological samples.

The electrooxidation of DA and UA at the surfaces of Fe2O3.The electrocatalytic active sites bind with the DA and UA through hydrogen bonds at the surface of Fe2O3. Through the DPV or CV scanning, the electrooxidation of DA and UA proceeded and the oxidized form quinolone-DA and keto-UA were obtained with losing of 2e/2H+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Shinohara, F. Wang, S.Z. Hossain, A convenient. Nat. Protoc. 3(10), 1639–1644 (2008)

    Article  PubMed  Google Scholar 

  2. Y. Zhao, Y. Gao, D. Zhan, H. Liu, Q. Zhao, Y. Kou, Y. Shao, M. Li, Q. Zhuang, Z. Zhu, Selective detection of dopamine in the presence of ascorbic acid and uric acid by a carbon nanotubes-ionic liquid gel modified electrode. Talanta 66(1), 51–57 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Y. Liu, J. Huang, H. Hou, T. You, Simultaneous determination of dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers modified electrode. Electrochem. Commun. 10(10), 1431–1434 (2008)

    Article  CAS  Google Scholar 

  4. T. Nakaminami, S.-i. Ito, S. Kuwabata, H. Yoneyama, Anal. Chem. 71, 1928 (1999)

    Article  CAS  PubMed  Google Scholar 

  5. E. Popa, Y. Kubota, D.A. Tryk, A. Fujishima, Selective voltammetric and amperometric detection of uric acid with oxidized diamond film electrodes. Anal. Chem. 72(7), 1724–1727 (2000)

    Article  CAS  PubMed  Google Scholar 

  6. T.-F. Kang, G.-L. Shen, R.-Q. Yu, Voltammetric behaviour of dopamine at nickel phthalocyanine polymer modified electrodes and analytical applications. Anal. Chim. Acta 354(1-3), 343–349 (1997)

    Article  CAS  Google Scholar 

  7. A.A. Abdelwahab, Y.-B. Shim, Simultaneous determination of ascorbic acid, dopamine, uric acid and folic acid based on activated graphene/MWCNT nanocomposite loaded Au nanoclusters. Sensors Actuators B Chem. 221, 659–665 (2015)

    Article  CAS  Google Scholar 

  8. J. Cheng, H. Yan, Y. Lu, K. Qiu, X. Hou, J. Xu, L. Han, X. Liu, J.-K. Kim, Y. Luo, Mesoporous CuCo2O4nanograsses as multi-functional electrodes for supercapacitors and electro-catalysts. J. Mater. Chem. A 3(18), 9769–9776 (2015)

    Article  CAS  Google Scholar 

  9. M.Y. Emran, H. Khalifa, H. Gomaa, M.A. Shenashen, N. Akhtar, M. Mekawy, A. Faheem, S.A. El-Safty, Hierarchical C-N doped NiO with dual-head echinop flowers for ultrasensitive monitoring of epinephrine in human blood serum. Microchim. Acta 184(11), 4553–4562 (2017)

    Article  CAS  Google Scholar 

  10. M.Y. Emran, M. Mekawy, N. Akhtar, M.A. Shenashen, I.M. EL-Sewify, A. Faheem, S.A. El-Safty, Broccoli-shaped biosensor hierarchy for electrochemical screening of noradrenaline in living cells. Biosens. Bioelectron. 100, 122–131 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. M.Y. Emran, M.A. Shenashen, M. Mekawy, A.M. Azzam, N. Akhtar, H. Gomaa, M.M. Selim, A. Faheem, S.A. El-Safty, Ultrasensitive in-vitro monitoring of monoamine neurotransmitters from dopaminergic cells. Sensors Actuators B Chem. 259, 114–124 (2018)

    Article  CAS  Google Scholar 

  12. K. Ghanbari, M. Moloudi, Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Anal. Biochem. 512, 91–102 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. C. Sumathi, C.V. Raju, P. Muthukumaran, J. Wilson, G. Ravi, Au–Pd bimetallic nanoparticles anchored on α-Fe2O3nonenzymatic hybrid nanoelectrocatalyst for simultaneous electrochemical detection of dopamine and uric acid in the presence of ascorbic acid. J. Mater. Chem. B 4(15), 2561–2569 (2016)

    Article  CAS  Google Scholar 

  14. J.-y. Sun, T. Gan, Y.-p. Deng, Z.-x. Shi, Z. Lv, Pt nanoparticles-functionalized hierarchically porous γ-Al2O3 hollow spheres based electrochemical sensor for ultrasensitive guaiacol detection. Sensors Actuators B Chem. 211, 339–345 (2015)

    Article  CAS  Google Scholar 

  15. J. Hou, C. Xu, D. Zhao, J. Zhou, Facile fabrication of hierarchical nanoporous AuAg alloy and its highly sensitive detection towards dopamine and uric acid. Sensors Actuators B Chem. 225, 241–248 (2016)

    Article  CAS  Google Scholar 

  16. Y. Liu, P. She, J. Gong, W. Wu, S. Xu, J. Li, K. Zhao, A. Deng, A novel sensor based on electrodeposited Au–Pt bimetallic nano-clusters decorated on graphene oxide (GO)–electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sensors Actuators B Chem. 221, 1542–1553 (2015)

    Article  CAS  Google Scholar 

  17. R. Ojani, J.-B. Raoof, A.A. Maleki, S. Safshekan, Chin. J. Catal. 35, 423 (2014)

    Article  CAS  Google Scholar 

  18. Z. Yang, X. Zheng, J. Zheng, A facile one-step synthesis of Fe 2 O 3/nitrogen-doped reduced graphene oxide nanocomposite for enhanced electrochemical determination of dopamine. J. Alloys Compd. 709, 581–587 (2017)

    Article  CAS  Google Scholar 

  19. Z. Yu, H. Li, J. Lu, X. Zhang, N. Liu, X. Zhang, Hydrothermal synthesis of Fe2O3/graphene nanocomposite for selective determination of ascorbic acid in the presence of uric acid. Electrochim. Acta 158, 264–270 (2015)

    Article  CAS  Google Scholar 

  20. H. Filik, A.A. Avan, S. Aydar, Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode. Arab. J. Chem. 9(3), 471–480 (2016)

    Article  CAS  Google Scholar 

  21. N. Akhtar, M.Y. Emran, M.A. Shenashen, H. Khalifa, T. Osaka, A. Faheem, T. Homma, H. Kawarada, S.A. El-Safty, J. Mater. Chem. B 5, 7985 (2017)

    Article  CAS  Google Scholar 

  22. Y. Li, X. Lin, Simultaneous electroanalysis of dopamine, ascorbic acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon electrode. Sensors Actuators B Chem. 115(1), 134–139 (2006)

    Article  CAS  Google Scholar 

  23. N. Akhtar, S.A. El-Safty, M. Khairy, Chem. Aust. 2, 235 (2014)

    Google Scholar 

  24. N. Akhtar, S.A. El-Safty, M. Khairy, W.A. El-Said, Fabrication of a highly selective nonenzymatic amperometric sensor for hydrogen peroxide based on nickel foam/cytochrome c modified electrode. Sensors Actuators B Chem. 207, 158–166 (2015)

    Article  CAS  Google Scholar 

  25. D. Hassen, S.A. El-Safty, K. Tsuchiya, A. Chatterjee, A. Elmarakbi, M.A. Shenashen, M. Sakai, Sci. Rep. 6, 24330 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D. Hassen, M. Shenashen, S. El-Safty, M. Selim, H. Isago, A. Elmarakbi, A. El-Safty, H. Yamaguchi, Nitrogen-doped carbon-embedded TiO 2 nanofibers as promising oxygen reduction reaction electrocatalysts. J. Power Sources 330, 292–303 (2016)

    Article  CAS  Google Scholar 

  27. M. Khairy, S.A. El-Safty, Mesoporous NiO nanoarchitectures for electrochemical energy storage: influence of size, porosity, and morphology. RSC Adv. 3(45), 23801 (2013)

    Article  CAS  Google Scholar 

  28. M. Khairy, S.A. El-Safty, M. Ismael, H. Kawarada, Mesoporous NiO nanomagnets as catalysts and separators of chemical agents. Appl. Catal. B 127, 1–10 (2012)

    Article  CAS  Google Scholar 

  29. Y. Zeng, C. Li, C. Tang, X.B. Zhang, G. Shen, R. Yu, The electrochemical properties of Co(TPP), tetraphenylborate modified glassy carbon electrode: application to dopamine and uric acid analysis. Electroanalysis 18(5), 440–448 (2006)

    Article  CAS  Google Scholar 

  30. N. Akhtar, S.A. ElSafty, M.E. Abdelsalam, H. Kawarada, Adv. Healthc. Mater. 4, 2110 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. N. Akhtar, S.A. El-Safty, M.E. Abdelsalam, M.A. Shenashen, H. Kawarada, Biosens. Bioelectron. 77, 656 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. D. Bruns, Detection of transmitter release with carbon fiber electrodes. Methods 33(4), 312–321 (2004)

    Article  CAS  PubMed  Google Scholar 

  33. A.G. Nasibulin, S. Rackauskas, H. Jiang, Y. Tian, P.R. Mudimela, S.D. Shandakov, L.I. Nasibulina, S. Jani, E.I. Kauppinen, Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2(5), 373–379 (2009)

    Article  CAS  Google Scholar 

  34. S.A. El-Safty, M.A. Shenashen, M. Ismael, M. Khairy, Adv. Funct. Mater. 22, 3013 (2012)

    Article  CAS  Google Scholar 

  35. S.A. El-Safty, Synthesis, characterization and catalytic activity of highly ordered hexagonal and cubic composite monoliths. J. Colloid Interface Sci. 319(2), 477–488 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. S.A. El-Safty, M. Khairy, M.A. Shenashen, E. Elshehy, W. Warkocki, M. Sakai, Optical mesoscopic membrane sensor layouts for water-free and blood-free toxicants. Nano Res. 8(10), 3150–3163 (2015)

    Article  CAS  Google Scholar 

  37. S.A. El-Safty, Y. Kiyozumi, T. Hanaoka, F. Mizukami, Appl. Catal. A 121, 337 (2008)

    Google Scholar 

  38. S.A. El-Safty, M. Sakai, M.M. Selim, A.A. Alhamid, Mesotubular-structured hybrid membrane nanocontainer for periodical monitoring, separation, and recovery of cobalt ions from water. Chem. Asian J. 10(9), 1909–1918 (2015)

    Article  CAS  PubMed  Google Scholar 

  39. S.A. El-Safty, M. Sakai, M.M. Selim, A.A. Hendi, Mesosponge optical sinks for multifunctional mercury ion assessment and recovery from water sources. ACS Appl. Mater. Interfaces 7(24), 13217–13231 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. S.A. El-Safty, M. Shenashen, Optical mesosensor for capturing of Fe(III) and Hg(II) ions from water and physiological fluids. Sensors Actuators B Chem. 183, 58–70 (2013)

    Article  CAS  Google Scholar 

  41. S.A. El-Safty, M. Shenashen, M. Khairy, Bioadsorption of proteins on large mesocage-shaped mesoporous alumina monoliths. Colloids Surf. B: Biointerfaces 103, 288–297 (2013)

    Article  CAS  PubMed  Google Scholar 

  42. S.A. El-Safty, M. Shenashen, A. Shahat, Tailor-made micro-object optical sensor based on mesoporous pellets for visual monitoring and removal of toxic metal ions from aqueous media. Small 9(13), 2288–2296 (2013)

    Article  CAS  PubMed  Google Scholar 

  43. S.A. El-Safty, M.A. Shenashen, N. Akhtar, M.M. Selim, W.M. Morsy, H. Yamaguchi, S. Kawada, A.A. Alhamid, N. Ohashi, I. Ichinose, Chem. Asian J. 12, 1952 (2017)

    Article  CAS  PubMed  Google Scholar 

  44. M.S. Selim, A. Elmarakbi, A.M. Azzam, M.A. Shenashen, A.M. EL-Saeed, S.A. El-Safty, Eco-friendly design of superhydrophobic nano-magnetite/silicone composites for marine foul-release paints. Prog. Org. Coat. 116, 21–34 (2018)

    Article  CAS  Google Scholar 

  45. M.S. Selim, M.A. Shenashen, A. Elmarakbi, A.M. El-Saeed, M.M. Selim, S.A. El-Safty, Sunflower oil-based hyperbranched alkyd/spherical ZnO nanocomposite modeling for mechanical and anticorrosive applications. RSC Adv. 7(35), 21796–21808 (2017)

    Article  CAS  Google Scholar 

  46. M.S. Selim, M.A. Shenashen, A. Elmarakbi, N.A. Fatthallah, S.-i. Hasegawa, S.A. El-Safty, Chem. Eng. J. 320, 653 (2017)

    Article  CAS  Google Scholar 

  47. M.A. Shenashen, S.A. El-Safty, M. Khairy, J. Porous. Mater. 20, 679 (2013)

    Article  CAS  Google Scholar 

  48. M.A. Shenashen, E. Elshehy, S.A. El-Safty, M. Khairy, Visual monitoring and removal of divalent copper, cadmium, and mercury ions from water by using mesoporous cubic Ia3d aluminosilica sensors. Sep. Purif. Technol. 116, 73–86 (2013)

    Article  CAS  Google Scholar 

  49. M.A. Shenashen, S.A. El-Safty, E.A. Elshehy, Monolithic scaffolds for highly selective ion sensing/removal of Co(ii), Cu(ii), and Cd(ii) ions in water. Analyst 139(24), 6393–6405 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. M.A. Shenashen, S.A. El-Safty, E.A. Elshehy, Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Part. Part. Syst. Charact. 31(3), 293–316 (2014)

    Article  CAS  Google Scholar 

  51. M.A. Shenashen, D. Hassen, S.A. El-Safty, H. Isago, A. Elmarakbi, H. Yamaguchi, Axially oriented tubercle vein and X-crossed sheet of N-Co 3 O 4 @C hierarchical mesoarchitectures as potential heterogeneous catalysts for methanol oxidation reaction. Chem. Eng. J. 313, 83–98 (2017)

    Article  CAS  Google Scholar 

  52. M.A. Shenashen, D. Hassen, S.A. El-Safty, M.M. Selim, N. Akhtar, A. Chatterjee, A. Elmarakbi, Adv. Mater. Interfaces 3, 1600743 (2016)

    Article  CAS  Google Scholar 

  53. M.A. Shenashen, S. Kawada, M.M. Selim, W.M. Morsy, H. Yamaguchi, A.A. Alhamid, N. Ohashi, I. Ichinose, S.A. El-Safty, Nano 9, 7947 (2017)

    CAS  Google Scholar 

  54. I.M. El-Sewify, M.A. Shenashen, A. Shahat, H. Yamaguchi, M.M. Selim, M.M. Khalil, S.A. El-Safty, Ratiometric fluorescent chemosensor for Zn2+ ions in environmental samples using supermicroporous organic-inorganic structures as potential platforms. ChemistrySelect 2(34), 11083–11090 (2017)

    Article  CAS  Google Scholar 

  55. A.M. Azzam, M.A. Shenashen, M.M. Selim, H. Yamaguchi, I.M. El-Sewify, S. Kawada, A.A. Alhamid, S.A. El-Safty, Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic(V) and chromium(VI) from aqueous solution. J. Phys. Chem. Solids 109, 78–88 (2017)

    Article  CAS  Google Scholar 

  56. A. Derbalah, S.A. El-Safty, M.A. Shenashen, N.A. Abdel Ghany, Mesoporous alumina nanoparticles as host tunnel-like pores for removal and recovery of insecticides from environmental samples. ChemPlusChem 80(7), 1119–1126 (2015)

    Article  CAS  Google Scholar 

  57. M.A. Shenashen, A. Derbalah, A. Hamza, A. Mohamed, S.A. El Safty, Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused byFusarium oxysporium. Pest Manag. Sci. 73(6), 1121–1126 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. D. De Faria, F. Lopes, Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vib. Spectrosc. 45(2), 117–121 (2007)

    Article  CAS  Google Scholar 

  59. M.M. Rahman, A.M. Asiri, Development of ionic-sensor based on sono-chemically prepared low-dimensional β-Fe2O3 nanoparticles onto flat-gold electrodes by an electrochemical approach. Sens. Bio-Sensing Res. 4, 109–117 (2015)

    Article  Google Scholar 

  60. D. Hassan, S.A. El-Safty, K.A. Khalil, M. Dewidar, G. Abu El-Maged, Int. J. Electrochem. Sci. 11, 8374 (2016)

    Article  CAS  Google Scholar 

  61. M. Khairy, S.A. El-Safty, Nanosized rambutan-like nickel oxides as electrochemical sensor and pseudocapacitor. Sensors Actuators B Chem. 193, 644–652 (2014)

    Article  CAS  Google Scholar 

  62. D. Buttry, A. Bard, Electroanalytical chemistry, vol 17 (Marcel Dekker, New York, 1991)

    Google Scholar 

  63. P. Zuman, R.N. Adams, Electrochemistry at solid electrodes: M. Dekker, New York, xiii+ 402, Elsevier, (1970)

  64. H. Ibrahim, Y. Temerk, Sensitive electrochemical sensor for simultaneous determination of uric acid and xanthine in human biological fluids based on the nano-boron doped ceria modified glassy carbon paste electrode. J. Electroanal. Chem. 780, 176–186 (2016)

    Article  CAS  Google Scholar 

  65. K. Schwab, G. Heubel, H. Bartels, Eur. J. Clin. Chem. Clin. Biochem. J. Forum Eur. Clin. Chem. Soc, 541–544 (1992)

  66. S.A. El-Safty, S. Abdellatef, M. Ismael, A. Shahat, Adv. Healthc. Mater. 2, 854 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. H. Gomaa, H. Khalifa, M. Selim, M. Shenashen, S. Kawada, A.S. Alamoudi, A. Azzam, A. Alhamid, S.A. El-Safty, Selective, photoenhanced trapping/detrapping of arsenate anions using mesoporous blobfish head TiO2 monoliths. ACS Sustain. Chem. Eng. 5(11), 10826–10839 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherif A. El-Safty.

Electronic supplementary material

ESM 1

(DOCX 496 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emran, M.Y., Shenashen, M.A., Abdelwahab, A.A. et al. Nanohexagonal Fe2O3 Electrode for One-Step Selective Monitoring of Dopamine and Uric Acid in Biological Samples. Electrocatalysis 9, 514–525 (2018). https://doi.org/10.1007/s12678-018-0468-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0468-0

Keywords

Navigation