Skip to main content
Log in

Effect of Nitrogen-Functional Groups on the ORR Activity of Activated Carbon Fiber-Polypyrrole-Based Electrodes

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Polypyrrole (PPy) coatings inside the microporosity of an activated carbon fiber (ACF) were synthesized by chemical polymerization obtaining ACF-PPy composites. N-doped ACFs were prepared by carbonization of the ACF-PPy composites at two temperatures (500 and 800 °C). All the samples were characterized using different techniques (XPS, SEM, elemental analysis, physical adsorption of N2, cyclic voltammetry, etc.). The electrochemical characterization in alkaline medium shows that the N-doped ACFs have a similar specific capacitance than the pristine ACF, in spite of the lower specific surface area. The materials were used as electrodes in the oxygen reduction reaction (ORR) in alkaline medium using the rotating ring-disk electrode (RRDE) and linear sweep voltammetry (LSV) tests. It was found that the N-doped ACF material carbonized at 800 °C has higher catalytic activity than the pristine ACF. The investigation also indicates that the ORR process on the N-doped ACF materials proceeds through an indirect two-electron pathway.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Vielstich, A. Lamm, H.A. Gasteiger, H. Yokokawa, Handbook of fuel cells: fundamentals, technology, and applications (Wiley, 2003)

  2. Y. Li, H. Dai, Recent advances in zinc–air batteries. Chem. Soc. Rev. 43(15), 5257–5275 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. M. Klingele, C. Van Pham, A. Fischer, S. Thiele, Fuel. Cells 16, 522 (2016)

    CAS  Google Scholar 

  4. M.A. Rahman, X. Wang, C. Wen, J. Electrochem. Soc. 160, 1759 (2013)

    Article  CAS  Google Scholar 

  5. P. Kichambare, S. Rodrigues, J. Kumar, Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium–oxygen batteries. ACS Appl. Mater. Interfaces 4(1), 49–52 (2012)

    Article  CAS  PubMed  Google Scholar 

  6. L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115(11), 4823–4892 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. A. Sarapuu, E. Kibena-Põldsepp, M. Borghei, K. Tammeveski, Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells. J. Mater. Chem. A 6(3), 776–804 (2018)

    Article  CAS  Google Scholar 

  8. D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7(2), 576 (2014)

    Article  CAS  Google Scholar 

  9. A. Asghar, A.A. Abdul Raman, W.M.A.W. Daud, Recent advances, challenges and prospects of in situ production of hydrogen peroxide for textile wastewater treatment in microbial fuel cells. J. Chem. Technol. Biotechnol. 89(10), 1466–1480 (2014)

    Article  CAS  Google Scholar 

  10. F.V.E. Dos Reis, V.S. Antonin, P. Hammer, M.C. Santos, P.H.C. Camargo, Carbon-supported TiO2–Au hybrids as catalysts for the electrogeneration of hydrogen peroxide: investigating the effect of TiO2 shape. J. Catal. 326, 100–106 (2015)

    Article  CAS  Google Scholar 

  11. M. A. O’Connell, J. R. Lewis, and A. J. Wain, Chem. Commun. 51, 10314 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. J.T. Jasper, Z.L. Jones, J.O. Sharp, D.L. Sedlak, Biotransformation of trace organic contaminants in open-water unit process treatment wetlands. Environ. Sci. Technol. 48(9), 5136–5144 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. K. Tammeveski, K. Kontturi, R.J. Nichols, R.J. Potter, D.J. Schiffrin, Surface redox catalysis for O2 reduction on quinone-modified glassy carbon electrodes. J. Electroanal. Chem. 515(1-2), 101–112 (2001)

    Article  CAS  Google Scholar 

  14. A. Sarapuu, K. Vaik, D.J. Schiffrin, K. Tammaveski, Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J. Electroanal. Chem. 541, 23–29 (2003)

    Article  CAS  Google Scholar 

  15. A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11–27 (2006)

    Article  CAS  Google Scholar 

  16. R. J. Brodd, in Carbons Electrochem Energy Storage Convers Syst, edited by F. Béguin and E. Frackowiak (CRC Press, 2009), pp. 411–468

  17. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. J. Quílez-Bermejo, C. González-Gaitán, E. Morallón, D. Cazorla-Amorós, Effect of carbonization conditions of polyaniline on its catalytic activity towards ORR. Some insights about the nature of the active sites. Carbon 119, 62–71 (2017)

    Article  CAS  Google Scholar 

  19. S. Maldonado, K.J. Stevenson, Influence of nitrogen doping on oxygen reduction electrocatalysis at carbon nanofiber electrodes. J. Phys. Chem. B 109(10), 4707–4716 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. P. Chen, L.-K. Wang, G. Wang, M.-R. Gao, J. Ge, W.-J. Yuan, Y.-H. Shen, A.-J. Xie, S.-H. Yu. Energy Environ. Sci. 7(12), 4095–4103 (2014)

    Article  CAS  Google Scholar 

  21. S. Shiraishi, Heat-treatment and nitrogen-doping of activated carbons for high voltage operation of electric double layer capacitor. Key Eng. Mater. 497, 80–86 (2011)

    Article  CAS  Google Scholar 

  22. M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 46(11), 1475–1488 (2008)

    Article  CAS  Google Scholar 

  23. W. Shen, W. Fan, Nitrogen-containing porous carbons: synthesis and application. J. Mater. Chem. A 1(4), 999–1013 (2013)

    Article  CAS  Google Scholar 

  24. S. Ratso, I. Kruusenberg, M. Vikkisk, U. Joost, E. Shulga, I. Kink, T. Kallio, K. Tammeveski, Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon 73, 361–370 (2014)

    Article  CAS  Google Scholar 

  25. S. Ratso, I. Kruusenberg, U. Joost, R. Saar, K. Tammeveski, Enhanced oxygen reduction reaction activity of nitrogen-doped graphene/multi-walled carbon nanotube catalysts in alkaline media. Int. J. Hydrog. Energy 41(47), 22510–22519 (2016)

    Article  CAS  Google Scholar 

  26. S. Ratso, I. Kruusenberg, M. Käärik, M. Kook, R. Saar, M. Pärs, J. Leis, K. Tammeveski, Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon 113, 159–169 (2017)

    Article  CAS  Google Scholar 

  27. M. Vikkisk, I. Kruusenberg, S. Ratso, U. Joost, E. Shulga, I. Kink, P. Rauwel, K. Tammeveski, Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv. 5(73), 59495–59505 (2015)

    Article  CAS  Google Scholar 

  28. M. Vikkisk, I. Kruusenberg, U. Joost, E. Shulga, K. Tammeveski, Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes. Electrochim. Acta 87, 709–716 (2013)

    Article  CAS  Google Scholar 

  29. M.A. Chougule, Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci. Lett. 1(01), 6–10 (2011)

    Article  CAS  Google Scholar 

  30. L.-X. Wang, X.-G. Li, Y.-L. Yang, Preparation, properties and applications of polypyrroles. React. Funct. Polym. 47(2), 125–139 (2001)

    Article  CAS  Google Scholar 

  31. M. Mooste, E. Kibena-Põldsepp, L. Matisen, M. Merisalu, M. Kook, V. Kisand, V. Vassiljeva, A. Krumme, V. Sammelselg, K. Tammeveski, Catal. Lett. (2018). https://doi.org/10.1007/s10562-018-2392-6

    Article  CAS  Google Scholar 

  32. J. Quílez-Bermejo, E. Morallón, D. Cazorla-Amorós, Chem. Commun. 54, 4441 (2018)

    Article  Google Scholar 

  33. M. Borghei, P. Kanninen, M. Lundahl, T. Susi, J. Sainio, I. Anoshkin, A. Nasibulin, T. Kallio, K. Tammeveski, E. Kauppinen, V. Ruiz, Appl. Catal. B Environ. 158–159, 233 (2014)

    Article  CAS  Google Scholar 

  34. A. Gabe, J. García-Aguilar, Á. Berenguer-Murcia, E. Morallón, D. Cazorla-Amorós, Key factors improving oxygen reduction reaction activity in cobalt nanoparticles modified carbon nanotubes. Appl. Catal. B Environ. 217, 303–312 (2017)

    Article  CAS  Google Scholar 

  35. D. Salinas-Torres, J.M. Sieben, D. Lozano-Castelló, D. Cazorla-Amorós, E. Morallón, Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes. Electrochim. Acta 89, 326–333 (2013)

    Article  CAS  Google Scholar 

  36. D. Cazorla-Amorós, J. Alcañiz-Monge, M.A. de la Casa-Lillo, A. Linares-Solano, CO2As an adsorptive to characterize carbon molecular sieves and activated carbons. Langmuir 14(16), 4589–4596 (1998)

    Article  Google Scholar 

  37. F. Stoeckli, L. Ballerini, Evolution of microporosity during activation of carbon. Fuel 70(4), 557–559 (1991)

    Article  CAS  Google Scholar 

  38. D. Cazorla-Amorós, J. Alcaniz-Monge, Á. Linares-Solano, Characterization of activated carbon fibers by CO2 adsorption. Langmuir 12(11), 2820–2824 (1996)

    Article  Google Scholar 

  39. F. Zaragoza-Martín, D. Sopeña-Escario, E. Morallón, C.S.-M. de Lecea, Pt/carbon nanofibers electrocatalysts for fuel cells. J. Power Sources 171(2), 302–309 (2007)

    Article  CAS  Google Scholar 

  40. A. J. Bard and L. R. Faulkner, Electrochemical methods. Fundamentals and applications, 2nd ed. (New York, 2001)

  41. R.E. Davis, G.L. Horvath, C.W. Tobias, The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions. Electrochim. Acta 12(3), 287–297 (1967)

    Article  CAS  Google Scholar 

  42. D. Salinas-Torres, J.M. Sieben, D. Lozano-Castelló, E. Morallón, M. Burghammer, C. Riekel, D. Cazorla-Amorós, Characterization of activated carbon fiber/polyaniline materials by position-resolved microbeam small-angle X-ray scattering. Carbon 50(3), 1051–1056 (2012)

    Article  CAS  Google Scholar 

  43. C. Malitesta, I. Losito, L. Sabbatini, P.G. Zambonin, New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling. J. Electron Spectros. Relat. Phenomena 76, 629–634 (1995)

    Article  CAS  Google Scholar 

  44. A. Morozan, P. Jégou, S. Campidelli, S. Palacin, B. Jousselme, Relationship between polypyrrole morphology and electrochemical activity towards oxygen reduction reaction. Chem. Commun. 48(38), 4627–4629 (2012)

    Article  CAS  Google Scholar 

  45. M. Yuasa, A. Yamaguchi, H. Itsuki, K. Tanaka, Modifying carbon particles with polypyrrole for adsorption of cobalt ions as electrocatatytic site for oxygen reduction. Chem. Mater. 17(17), 4278–4281 (2005)

    Article  CAS  Google Scholar 

  46. E. Raymundo-Piñero, D. Cazorla-Amorós, Á. Linares-Solano, The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres. Carbon 41(10), 1925–1932 (2003)

    Article  CAS  Google Scholar 

  47. E. Raymundo-Piñero, D. Cazorla-Amorós, Á. Linares-Solano, J. Find, U. Wild, R. Schlogl, Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon 40(4), 597–608 (2002)

    Article  Google Scholar 

  48. Z. Rozlívková, M. Trchová, M. Exnerová, J. Stejskal, The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synth. Met. 161(11-12), 1122–1129 (2011)

    Article  CAS  Google Scholar 

  49. S. Kuroki, Y. Hosaka, C. Yamauchi, A solid-state NMR study of the carbonization of polyaniline. Carbon 55, 160–167 (2013)

    Article  CAS  Google Scholar 

  50. M.J. Bleda-Martínez, D. Lozano-Castelló, E. Morallón, D. Cazorla-Amorós, Á. Linares-Solano, Chemical and electrochemical characterization of porous carbon materials. Carbon 44(13), 2642–2651 (2006)

    Article  CAS  Google Scholar 

  51. C. González-Gaitán, R. Ruiz-Rosas, E. Morallón, D. Cazorla-Amorós, Functionalization of carbon nanotubes using aminobenzene acids and electrochemical methods. Electroactivity for the oxygen reduction reaction. Int. J. Hydrog. Energy 40(34), 11242–11253 (2015)

    Article  CAS  Google Scholar 

  52. A. Dobrzeniecka, A.R. Zeradjanin, J. Masa, M. Blicharska, D. Wintrich, P.J. Kulesza, W. Schuhmann, Evaluation of kinetic constants on porous, non-noble catalyst layers for oxygen reduction—a comparative study between SECM and hydrodynamic methods. Catal. Today 262, 74–81 (2016)

    Article  CAS  Google Scholar 

  53. J. Wu, D. Zhang, H. Niwa, Y. Harada, M. Oshima, H. Ofuchi, Y. Nabae, T. Okajima, T. Ohsaka, Enhancement in kinetics of the oxygen reduction reaction on a nitrogen-doped carbon catalyst by introduction of iron via electrochemical methods. Langmuir 31(19), 5529–5536 (2015)

    Article  CAS  PubMed  Google Scholar 

  54. T. Sharifi, G. Hu, X. Jia, T. Wågberg, Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 6(10), 8904–8912 (2012)

    Article  CAS  PubMed  Google Scholar 

  55. M. Bayati, K. Scott, Synthesis and activity of a single active site n-doped electro-catalyst for oxygen reduction. Electrochim. Acta 213, 927–932 (2016)

    Article  CAS  Google Scholar 

  56. M. Park, T. Lee, B.-S. Kim, Covalent functionalization based heteroatom doped graphene nanosheet as a metal-free electrocatalyst for oxygen reduction reaction. Nanoscale 5(24), 12255–12260 (2013)

    Article  CAS  PubMed  Google Scholar 

  57. M. Vikkisk, I. Kruusenberg, U. Joost, E. Shulga, I. Kink, K. Tammeveski, Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media. Appl. Catal. B Environ. 147, 369–376 (2014)

    Article  CAS  Google Scholar 

  58. N. Alexeyeva, K. Tammeveski, Electrochemical reduction of oxygen on multiwalled carbon nanotube modified glassy carbon electrodes in acid media. Electrochem. Solid-State Lett. 10(5), F18 (2007)

    Article  CAS  Google Scholar 

  59. R. A. Sidik, A. B. Anderson, Nalini P. Subramanian, A. Swaminatha P. Kumaraguru, SP and B. N. Popov, (2006)

  60. Y. Okamoto, First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon. Appl. Surf. Sci. 256(1), 335–341 (2009)

    Article  CAS  Google Scholar 

  61. B.W. Noffke, Q. Li, K. Raghavachari, L. Li, A model for the pH-dependent selectivity of the oxygen reduction reaction electrocatalyzed by N-doped graphitic carbon. J. Am. Chem. Soc. 138(42), 13923–13929 (2016)

    Article  CAS  Google Scholar 

  62. E. Yeager, Electrocatalysts for O2 reduction. Electrochim. Acta 29(11), 1527–1537 (1984)

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank MINECO, GV, and FEDER for financial support (projects MAT2016-76595-R, CTQ2015-66080-R (MINECO/FEDER)). ACRP thanks GV for a Santiago Grisolía fellowship (GRISOLIA/2012/009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia Morallón.

Electronic Supplementary Material

ESM 1

(DOCX 362 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Pérez, A.C., Quílez-Bermejo, J., Sieben, J.M. et al. Effect of Nitrogen-Functional Groups on the ORR Activity of Activated Carbon Fiber-Polypyrrole-Based Electrodes. Electrocatalysis 9, 697–705 (2018). https://doi.org/10.1007/s12678-018-0478-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0478-y

Keywords

Navigation