Skip to main content
Erschienen in: International Journal of Machine Learning and Cybernetics 5/2013

01.10.2013 | Original Article

Fast learning complex-valued classifiers for real-valued classification problems

verfasst von: R. Savitha, S. Suresh, N. Sundararajan

Erschienen in: International Journal of Machine Learning and Cybernetics | Ausgabe 5/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we present two fast learning complex-valued, single hidden layer neural network classifiers namely, ‘bilinear branch-cut complex-valued extreme learning machine (BB-CELM)’ and ‘phase encoded complex-valued extreme learning machine (PE-CELM)’ to solve real-valued classification problems. BB-CELM and PE-CELM use the bilinear transformation with a branch-cut at 2π and the phase encoded transformation, respectively, at the input layer to transform the feature space from the real domain to complex domain (\({\Re \rightarrow \mathbb{C}}\)). A complex-valued activation function of the type of hyperbolic secant employed at the hidden layer maps the complex-valued feature space to a hyper dimensional complex space (\({\mathbb{C}^m \rightarrow \mathbb{C}^K\quad K > m}\)). BB-CELM and PE-CELM are trained by choosing the hidden layer parameters randomly and computing the output weights analytically. Therefore, these classifiers require minimal computational effort during the training process. The performances of these classifiers are evaluated on a set of benchmark classification problems from the UCI machine learning repository and a practical acoustic emission signal classification problem. The results of the performance study highlight the superior classification ability of BB-CELM and PE-CELM classifiers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Fußnoten
1
It must be noted here that all the input features are scaled in [0, 1], i.e., \(\mathbf{x}_t \in \Re[0,1], t = 1 \ldots N.\)
 
Literatur
1.
Zurück zum Zitat Aizenberg I, Moraga C (2007) Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm. Soft Comput 11(2):169–183CrossRef Aizenberg I, Moraga C (2007) Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm. Soft Comput 11(2):169–183CrossRef
2.
Zurück zum Zitat Aizenberg I, Paliy DV, Zurada JM, Astola JT (2008) Blur identification by multilayer neural network based on multivalued neurons. IEEE Transact Neural Netw 19(5):883–898CrossRef Aizenberg I, Paliy DV, Zurada JM, Astola JT (2008) Blur identification by multilayer neural network based on multivalued neurons. IEEE Transact Neural Netw 19(5):883–898CrossRef
3.
Zurück zum Zitat Amin MF, Islam MM, Murase K (2009) Ensemble of single-layered complex-valued neural networks for classification tasks. Neurocomputing 72(10-12):2227–2234CrossRef Amin MF, Islam MM, Murase K (2009) Ensemble of single-layered complex-valued neural networks for classification tasks. Neurocomputing 72(10-12):2227–2234CrossRef
4.
Zurück zum Zitat Amin MF, Murase K (2009) Single-layered complex-valued neural network for real-valued classification problems. Neurocomputing 72(4-6):945–955CrossRef Amin MF, Murase K (2009) Single-layered complex-valued neural network for real-valued classification problems. Neurocomputing 72(4-6):945–955CrossRef
5.
Zurück zum Zitat Babu R, Suresh S, Savitha R (2012) Human action recognition using a fast learning complex-valued classifier. Neurocomputing 89:202–212CrossRef Babu R, Suresh S, Savitha R (2012) Human action recognition using a fast learning complex-valued classifier. Neurocomputing 89:202–212CrossRef
7.
Zurück zum Zitat Bregains JC, Ares F (2006) Analysis, synthesis and diagnosis of antenna arrays through complex-valued neural networks. Microw Opt Technol Letters 48(8):1512–1515CrossRef Bregains JC, Ares F (2006) Analysis, synthesis and diagnosis of antenna arrays through complex-valued neural networks. Microw Opt Technol Letters 48(8):1512–1515CrossRef
8.
Zurück zum Zitat Cristianini N, Taylor JS (2000) An Introduction to support vector machines. Cambridge University Press, Cambridge, UK Cristianini N, Taylor JS (2000) An Introduction to support vector machines. Cambridge University Press, Cambridge, UK
9.
Zurück zum Zitat Haykin S (1998) Neural networks: a comprehensive foundation. Prentice Hall, New Jersey, USA Haykin S (1998) Neural networks: a comprehensive foundation. Prentice Hall, New Jersey, USA
10.
Zurück zum Zitat Huang GB, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74(1–3):155–163CrossRef Huang GB, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74(1–3):155–163CrossRef
11.
Zurück zum Zitat Huang GB, Saratchandran P, Sundararajan N (2004) An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Transact Syst Man Cybern Part B Cybern 34(6):2284–2292CrossRef Huang GB, Saratchandran P, Sundararajan N (2004) An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Transact Syst Man Cybern Part B Cybern 34(6):2284–2292CrossRef
12.
Zurück zum Zitat Jianping D, Sundararajan N, Saratchandran P (2000) Complex-valued minimal resource allocation network for nonlinear signal processing. Int J Neural Syst 10(2):95–106 Jianping D, Sundararajan N, Saratchandran P (2000) Complex-valued minimal resource allocation network for nonlinear signal processing. Int J Neural Syst 10(2):95–106
13.
Zurück zum Zitat Kim T, Adali T (2002) Fully complex multi-layer perceptron network for nonlinear signal processing. J VLSI Signal Process 32(1/2):29–43CrossRefMATH Kim T, Adali T (2002) Fully complex multi-layer perceptron network for nonlinear signal processing. J VLSI Signal Process 32(1/2):29–43CrossRefMATH
14.
Zurück zum Zitat Kim T, Adali T (2003) Approximation by fully complex multi-layer perceptrons. Neural Comput 15(7):1641–1666CrossRefMATH Kim T, Adali T (2003) Approximation by fully complex multi-layer perceptrons. Neural Comput 15(7):1641–1666CrossRefMATH
15.
Zurück zum Zitat Lee C, Landgrebe DA (1997) Decision boundary feature extraction for neural networks. IEEE Transact Neural Netw 8(1):75–83CrossRef Lee C, Landgrebe DA (1997) Decision boundary feature extraction for neural networks. IEEE Transact Neural Netw 8(1):75–83CrossRef
16.
Zurück zum Zitat Li MB, Huang GB, Saratchandran P, Sundararajan N (2005) Fully complex extreme learning machine. Neurocomputing 68(1–4):306–314CrossRef Li MB, Huang GB, Saratchandran P, Sundararajan N (2005) Fully complex extreme learning machine. Neurocomputing 68(1–4):306–314CrossRef
17.
Zurück zum Zitat Li MB, Huang GB, Saratchandran P, Sundararajan N (2006) Complex-valued growing and pruning RBF neural networks for communication channel equalisation. IEE Proc Vis Imag Signal Process 153(4):411–418CrossRef Li MB, Huang GB, Saratchandran P, Sundararajan N (2006) Complex-valued growing and pruning RBF neural networks for communication channel equalisation. IEE Proc Vis Imag Signal Process 153(4):411–418CrossRef
18.
Zurück zum Zitat Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Transact Neural Netw 17(6):1411–1423CrossRef Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate on-line sequential learning algorithm for feedforward networks. IEEE Transact Neural Netw 17(6):1411–1423CrossRef
19.
Zurück zum Zitat Nitta T (2003) The computational power of complex-valued neuron. Artificial Neural Networks and Neural Information Processing ICANN/ICONIP. Lect Notes Comput Sci 2714:993–1000CrossRef Nitta T (2003) The computational power of complex-valued neuron. Artificial Neural Networks and Neural Information Processing ICANN/ICONIP. Lect Notes Comput Sci 2714:993–1000CrossRef
20.
Zurück zum Zitat Nitta T (2003) Solving the xor problem and the detection of symmetry using a single complex-valued neuron. Neural Netw 16(8):1101–1105MathSciNetCrossRef Nitta T (2003) Solving the xor problem and the detection of symmetry using a single complex-valued neuron. Neural Netw 16(8):1101–1105MathSciNetCrossRef
21.
Zurück zum Zitat Nitta T (2004) Orthogonality of decision boundaries of complex-valued neural networks. Neural Comput 16(1):73–97CrossRefMATH Nitta T (2004) Orthogonality of decision boundaries of complex-valued neural networks. Neural Comput 16(1):73–97CrossRefMATH
22.
Zurück zum Zitat Omkar SN, Karanth UR (2008) Rule extraction for classification of acoustic emission signals using ant colony optimisation. Eng Appl Artif Intell 21(8):1381–1388CrossRef Omkar SN, Karanth UR (2008) Rule extraction for classification of acoustic emission signals using ant colony optimisation. Eng Appl Artif Intell 21(8):1381–1388CrossRef
23.
Zurück zum Zitat Omkar SN, Suresh S, Raghavendra TR, Mani V (2002) Acoustic emission signal classification using fuzzy C-means clustering. In: Proceedings of the ICONIP’02, 9th International Conference on Neural Information Processing, vol 4, pp 1827–1831 Omkar SN, Suresh S, Raghavendra TR, Mani V (2002) Acoustic emission signal classification using fuzzy C-means clustering. In: Proceedings of the ICONIP’02, 9th International Conference on Neural Information Processing, vol 4, pp 1827–1831
24.
Zurück zum Zitat Savitha R, Suresh S, Sundararajan N (2009) A fully complex-valued radial basis function network and its learning algorithm. Int J Neural Syst 19(4):253–267CrossRef Savitha R, Suresh S, Sundararajan N (2009) A fully complex-valued radial basis function network and its learning algorithm. Int J Neural Syst 19(4):253–267CrossRef
25.
Zurück zum Zitat Savitha R, Suresh S, Sundararajan N (2011) A fast learning complex-valued neural classifier for real-valued classification problems. International Joint Conference on Neural Networks (IJCNN 2011) pp 2243–2249 Savitha R, Suresh S, Sundararajan N (2011) A fast learning complex-valued neural classifier for real-valued classification problems. International Joint Conference on Neural Networks (IJCNN 2011) pp 2243–2249
26.
Zurück zum Zitat Savitha R, Suresh S, Sundararajan N (2012) Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems. Inf Sci 187(1):277–290MathSciNetCrossRef Savitha R, Suresh S, Sundararajan N (2012) Fast learning circular complex-valued extreme learning machine (CC-ELM) for real-valued classification problems. Inf Sci 187(1):277–290MathSciNetCrossRef
27.
Zurück zum Zitat Savitha R, Suresh S, Sundararajan N (2012) A meta-cognitive learning algorithm for a fully complex-valued relaxation network. Neural Netw 32:209–218CrossRefMATH Savitha R, Suresh S, Sundararajan N (2012) A meta-cognitive learning algorithm for a fully complex-valued relaxation network. Neural Netw 32:209–218CrossRefMATH
28.
Zurück zum Zitat Savitha R, Suresh S, Sundararajan N (2012) Meta-cognitive learning in fully complex-valued radial basis function network. Neural Comput 24(5):1297–1328MathSciNetCrossRef Savitha R, Suresh S, Sundararajan N (2012) Meta-cognitive learning in fully complex-valued radial basis function network. Neural Comput 24(5):1297–1328MathSciNetCrossRef
29.
Zurück zum Zitat Savitha R, Suresh S, Sundararajan N, Kim HJ (2011) A fully complex-valued radial basis function classifier for real-valued classification. Neurocomputing 78(1):104–110CrossRef Savitha R, Suresh S, Sundararajan N, Kim HJ (2011) A fully complex-valued radial basis function classifier for real-valued classification. Neurocomputing 78(1):104–110CrossRef
30.
Zurück zum Zitat Savitha R, Vigneshwaran S, Suresh S, Sundararajan N (2009) Adaptive beamforming using complex-valued radial basis function neural networks. IEEE Region 10 Conference, 2009 (TENCON 2009) pp 1–6 Savitha R, Vigneshwaran S, Suresh S, Sundararajan N (2009) Adaptive beamforming using complex-valued radial basis function neural networks. IEEE Region 10 Conference, 2009 (TENCON 2009) pp 1–6
31.
Zurück zum Zitat Shen C, Lajos H, Tan S (2008) Symmetric complex-calued RBF receiver for multiple-antenna-aided wireless systems. IEEE Transact Neural Netw 19(9):1659–1665CrossRef Shen C, Lajos H, Tan S (2008) Symmetric complex-calued RBF receiver for multiple-antenna-aided wireless systems. IEEE Transact Neural Netw 19(9):1659–1665CrossRef
32.
Zurück zum Zitat Suresh S, Babu RV, Kim HJ (2009) No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Comput 9(2):541–552CrossRef Suresh S, Babu RV, Kim HJ (2009) No-reference image quality assessment using modified extreme learning machine classifier. Appl Soft Comput 9(2):541–552CrossRef
33.
Zurück zum Zitat Suresh S, Dong K, Kim HJ (2010) A sequential learning algorithm for self-adaptive resource allocation network classifier. Neurocomputing 73(16–18):3012–3019CrossRef Suresh S, Dong K, Kim HJ (2010) A sequential learning algorithm for self-adaptive resource allocation network classifier. Neurocomputing 73(16–18):3012–3019CrossRef
34.
Zurück zum Zitat Suresh S, Omkar SN, Mani V, Menaka C (2004) Classification of acoustic emission signal using genetic programming. J Aerosp Sci Technol 56(1):26–41 Suresh S, Omkar SN, Mani V, Menaka C (2004) Classification of acoustic emission signal using genetic programming. J Aerosp Sci Technol 56(1):26–41
35.
Zurück zum Zitat Suresh S, Omkar SN, Mani V, Prakash TNG (2003) Lift coefficient prediction at high angle of attack using recurrent neural network. Aerosp Sci Technol 7(8):595–602CrossRefMATH Suresh S, Omkar SN, Mani V, Prakash TNG (2003) Lift coefficient prediction at high angle of attack using recurrent neural network. Aerosp Sci Technol 7(8):595–602CrossRefMATH
36.
Zurück zum Zitat Suresh S, Savitha R, Sundararajan N (2011) A sequential learning algorithm for complex-valued self-regulating resource allocation network-CSRAN. IEEE Transact Neural Netw 22(7):1061–1072CrossRef Suresh S, Savitha R, Sundararajan N (2011) A sequential learning algorithm for complex-valued self-regulating resource allocation network-CSRAN. IEEE Transact Neural Netw 22(7):1061–1072CrossRef
37.
Zurück zum Zitat Suresh S, Sundararajan N, Saratchandran P (2008) Risk-sensitive loss functions for sparse multi-category classification problems. Inf Sci 178(12):2621–2638MathSciNetCrossRefMATH Suresh S, Sundararajan N, Saratchandran P (2008) Risk-sensitive loss functions for sparse multi-category classification problems. Inf Sci 178(12):2621–2638MathSciNetCrossRefMATH
38.
Zurück zum Zitat Suresh S, Sundararajan N, Saratchandran P (2008) A sequential multi-category classifier using radial basis function networks. Neurocomputing 71(7–9):1345–1358CrossRef Suresh S, Sundararajan N, Saratchandran P (2008) A sequential multi-category classifier using radial basis function networks. Neurocomputing 71(7–9):1345–1358CrossRef
39.
Zurück zum Zitat Yingwei L, Sundararajan N, Saratchandran P (1997) A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput 9(2):461–478CrossRefMATH Yingwei L, Sundararajan N, Saratchandran P (1997) A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Comput 9(2):461–478CrossRefMATH
40.
Zurück zum Zitat Zhang GB (2000) Neural network for classification: A survey. IEEE Transact Syst Man Cybern Part C Appl Rev 30(4):451–462CrossRef Zhang GB (2000) Neural network for classification: A survey. IEEE Transact Syst Man Cybern Part C Appl Rev 30(4):451–462CrossRef
Metadaten
Titel
Fast learning complex-valued classifiers for real-valued classification problems
verfasst von
R. Savitha
S. Suresh
N. Sundararajan
Publikationsdatum
01.10.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Machine Learning and Cybernetics / Ausgabe 5/2013
Print ISSN: 1868-8071
Elektronische ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-012-0112-x

Weitere Artikel der Ausgabe 5/2013

International Journal of Machine Learning and Cybernetics 5/2013 Zur Ausgabe

Neuer Inhalt