Skip to main content
Log in

Recent progress in reconstructing lophotrochozoan (spiralian) phylogeny

  • Review
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Lophotrochozoa (also called Spiralia), the sister taxon of Ecdysozoa, includes animal taxa with disparate body plans such as the segmented annelids, the shell bearing molluscs and brachiopods, the colonial bryozoans, the endoparasitic acanthocephalans and the acoelomate platyhelminths. Phylogenetic relationships within Lophotrochozoa have been notoriously difficult to resolve leading to the point that they are often represented as polytomy. Recent studies focussing on phylogenomics, Hox genes and fossils provided new insights into the evolutionary history of this difficult group. New evidence supporting the inclusion of chaetognaths within gnathiferans, the phylogenetic position of Orthonectida and Dicyemida, as well as the general phylogeny of lophotrochozoans is reviewed. Several taxa formerly erected based on morphological synapomorphies (e.g. Lophophorata, Tetraneuralia, Parenchymia) seem (finally) to get additional support from phylogenomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguado, M. T., Capa, M., Lago-Barcia, D., Gil, J., Pleijel, F., & Nygren, A. (2019). Species delimitation in Amblyosyllis (Annelida, Syllidae). PLoS One, 14(4), e0214211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguinaldo, A., Turbeville, J. M., Linford, L., Rivera, M., Garey, J., Raff, R., et al. (1997). Evidence for a clade of nematodes, arthropods and other moulting animals. Nature, 387(6632), 489–493.

    Article  CAS  PubMed  Google Scholar 

  • Ahlrichs, W. H. (1995). Ultrastruktur und Phylogenie von Seison nebaliae (Grube 1859) und Seison annulatus (Claus 1876). Göttingen: Cuvilier Verlag.

    Google Scholar 

  • Andrade, S. C. S., Novo, M., Kawauchi, G. Y., Worsaae, K., Pleijel, F., Giribet, G., & Rouse, G. W. (2015). Articulating “archiannelids”: Phylogenomics and annelid relationships, with emphasis on meiofaunal taxa. Mol Biol Evol, 32, 2860–2875.

    Article  CAS  PubMed  Google Scholar 

  • Ax, P. (1995). Das System der Metazoa. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Ax, P. (2000). MulticelIular animals: the phylogenetic system of the Metazoa (2nd ed.). Berlin - Heidelberg: Springer Verlag.

    Book  Google Scholar 

  • Baguna, J. (2012). The planarian neoblast: the rambling history of its origin and some current black boxes. Int J Dev Biol, 56, 19–37.

    Article  CAS  PubMed  Google Scholar 

  • Balavoine, G. (1997). The early emergence of platyhelminths is contradicted by the agreement between 18S rRNA and Hox genes data. Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie, 320(1), 83–94.

    CAS  Google Scholar 

  • Balavoine, G., de Rosa, R., & Adoutte, A. (2002). Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol, 24(3), 366–373.

    Article  CAS  PubMed  Google Scholar 

  • Beckers, P., Loesel, R., & Bartolomaeus, T. (2013). The nervous systems of basally branching Nemertea (Palaeonemertea). PLoS One, 8(6), e66137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bely, A. E. (2010). Evolutionary loss of animal regeneration: pattern and process. Integr Comp Biol, 50(4), 515–527.

    Article  PubMed  Google Scholar 

  • Bely, A. E., Zattara, E. E., & Sikes, J. M. (2014). Regeneration in spiralians: evolutionary patterns and developmental processes. Int J Dev Biol, 58(6–8), 623–634.

    Article  PubMed  Google Scholar 

  • Bleidorn, C. (2017). Sources of error and incongruence in Phylogenomic analyses. In C. Bleidorn (Ed.), Phylogenomics: an introduction (pp. 173–193). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Bleidorn, C., Vogt, L., & Bartolomaeus, T. (2003). New insights into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Mol Phylogenet Evol, 29(2), 279–288.

    Article  CAS  PubMed  Google Scholar 

  • Bondarenko, N., Bondarenko, A., Starunov, V., & Slyusarev, G. (2019). Comparative analysis of the mitochondrial genomes of Orthonectida: insights into the evolution of an invertebrate parasite species. Mol Gen Genomics, 294, 715–727.

    Article  CAS  Google Scholar 

  • Brown, J. M. (2014). Detection of implausible phylogenetic inferences using posterior predictive assessment of model fit. Syst Biol, 63(3), 334–348.

    Article  PubMed  Google Scholar 

  • Brusca, R., Moore, W., & Shuster, S. (2016). Invertebrates (3rd edition ed.). Sunderland: Sinauer Associates.

    Google Scholar 

  • Caron, J.-B., & Cheung, B. (2019). Amiskwia is a large Cambrian gnathiferan with complex gnathostomulid-like jaws. Communications Biology, 2(1), 164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll, S. B. (1995). Homeotic genes and the evolution of arthropods and chordates. Nature, 376(6540), 479–485.

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith, T. (1998). A revised six-kingdom system of life. Biol Rev, 73(3), 203–266.

    Article  CAS  PubMed  Google Scholar 

  • Coe, W. R. (1929). Regeneration in nemerteans. J Exp Zool, 54(3), 411–459.

    Article  Google Scholar 

  • Cunha, T. J., & Giribet, G. (2019). A congruent topology for deep gastropod relationships. Proc R Soc B Biol Sci, 286(1898), 20182776.

    Article  CAS  Google Scholar 

  • Dayhoff, M., & Schwartz, R. (1978). A model of evolutionary change in proteins. In M. Dayhoff (Ed.), Atlas of protein sequence and structure. (Vol. Vol. 5, supplement 3, pp. 345-352). Silver Spring (MD): National Biomedical Research Foundation.

  • de Jong, D. M., & Seaver, E. C. (2018). Investigation into the cellular origins of posterior regeneration in the annelid Capitella teleta. Regeneration, 5(1), 61–77.

    Article  PubMed  CAS  Google Scholar 

  • de Rosa, R., Grenier, J. K., Andreeva, T., Cook, C. E., Adoutte, A., Akam, M., Carroll, S. B., & Balavoine, G. (1999). Hox genes in brachiopods and priapulids and protostome evolution. Nature, 399, 772–776.

    Article  CAS  PubMed  Google Scholar 

  • dos Reis, M., Thawornwattana, Y., Angelis, K., Telford, M. J., Donoghue, P. C. J., & Yang, Z. (2015). Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr Biol, 25(22), 2939–2950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dunn, C. W., Giribet, G., Edgecombe, G. D., & Hejnol, A. (2014). Animal phylogeny and its evolutionary implications. Annu Rev Ecol Evol Syst, 45(1), 371–395.

    Article  Google Scholar 

  • Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., Seaver, E., Rouse, G. W., Obst, M., Edgecombe, G. D., Sørensen, M. V., Haddock, S. H. D., Schmidt-Rhaesa, A., Okusu, A., Kristensen, R. M., Wheeler, W. C., Martindale, M. Q., & Giribet, G. (2008). Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 452(7188), 745–749.

    Article  CAS  PubMed  Google Scholar 

  • Edgecombe, G. D. (2017). Inferring arthropod phylogeny: fossils and their interaction with other data sources. Integr Comp Biol, 57(3), 467–476.

    Article  PubMed  Google Scholar 

  • Egger, B., Lapraz, F., Tomiczek, B., Müller, S., Dessimoz, C., Girstmair, J., Škunca, N., Rawlinson, K. A., Cameron, C. B., Beli, E., Todaro, M. A., Gammoudi, M., Noreña, C., & Telford, M. J. (2015). A transcriptomic-Phylogenomic analysis of the evolutionary relationships of flatworms. Curr Biol, 25(10), 1347–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger, B., Steinke, D., Tarui, H., De Mulder, K., Arendt, D., Borgonie, G., et al. (2009). To be or not to be a flatworm: the Acoel controversy. PLoS One, 4(5), e5502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Embley, M., Giezen, M. V. D., Horner, D. S., Dyal, P. L., & Foster, P. (2003). Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Phil Trans R Soc London Series B: Biol Sci, 358(1429), 191–203.

    Article  CAS  Google Scholar 

  • Emig, C. (1977). Un nouvel embranchement: les Lophophorates. Bulletin de la Societe Zoologique de France, 102, 341–344.

    Google Scholar 

  • Emig, C. (1984). On the origin of the Lophophorata. J Zool Syst Evol Res, 22(2), 91–94.

    Article  Google Scholar 

  • Ferrier, D. E. K., & Holland, P. W. H. (2001). Ancient origin of the Hox gene cluster. Nat Rev Genet, 2, 33–38.

    Article  CAS  PubMed  Google Scholar 

  • Fröbius, A. C., & Funch, P. (2017). Rotiferan Hox genes give new insights into the evolution of metazoan bodyplans. Nat Commun, 8(1), 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fromm, B., Tosar, J., Aguilera, F., Friedländer, M., Bachmann, L., & Hejnol, A. (2019). Evolutionary implications of the microRNA- and piRNA complement of Lepidodermella squamata (Gastrotricha). Non-Coding RNA, 5(19).

  • Funch, P. (1996). The chordoid larva of Symbion pandora (Cycliophora) is a modified trochophore. J Morphol, 230(3), 231–263.

    Article  PubMed  Google Scholar 

  • Gasmi, S., Nve, G., Pech, N., Tekaya, S., Gilles, A., & Perez, Y. (2014). Evolutionary history of Chaetognatha inferred from molecular and morphological data: a case study for body plan simplification. Front Zool, 11, 84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gehrke, A. R., & Srivastava, M. (2016). Neoblasts and the evolution of whole-body regeneration. Curr Opin Genet Dev, 40, 131–137.

    Article  CAS  PubMed  Google Scholar 

  • Halanych, K., Bacheller, J., Aguinaldo, A., Liva, S., Hillis, D., & Lake, J. (1995). Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science, 267(5204), 1641–1643.

    Article  CAS  PubMed  Google Scholar 

  • Halanych, K. M. (2004). The new view of animal phylogeny. Annu Rev Ecol Evol Syst, 35, 229–256.

    Article  Google Scholar 

  • Halanych, K. M. (2016). How our view of animal phylogeny was reshaped by molecular approaches: lessons learned. Org Divers Evol, 16(2), 319–328.

    Article  Google Scholar 

  • Harzsch, S., & Müller, C. H. (2007). A new look at the ventral nerve centre of Sagitta: implications for the phylogenetic position of Chaetognatha (arrow worms) and the evolution of the bilaterian nervous system. Front Zool, 4(1), 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haszprunar, G., & Wanninger, A. (2008). On the fine structure of the creeping larva of Loxosomella murmanica: additional evidence for a clade of Kamptozoa (Entoprocta) and Mollusca. Acta Zool, 89(2), 137–148.

    Article  Google Scholar 

  • Hatschek, B. (1888). Lehrbuch der Zoologie : eine morphologische Übersicht des Thierreiches zur Einführung in das Studium dieser Wissenschaft. Jena: G. Fischer Verlag.

    Google Scholar 

  • Hausdorf, B., Helmkampf, M., Nesnidal, M. P., & Bruchhaus, I. (2010). Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). Mol Phylogenet Evol, 55(3), 1121–1127.

    Article  PubMed  Google Scholar 

  • Hejnol, A., Obst, M., Stamatakis, A., Ott, M., Rouse, G. W., Edgecombe, G. D., Martinez, P., Baguñà, J., Bailly, X., Jondelius, U., Wiens, M., Müller, W. E. G., Seaver, E., Wheeler, W. C., Martindale, M. Q., Giribet, G., & Dunn, C. W. (2009). Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc Biol Sci, 276(1677), 4261–4270.

    PubMed  PubMed Central  Google Scholar 

  • Helmkampf, M., Bruchhaus, I., & Hausdorf, B. (2008). Phylogenomic analyses of lophophorates (brachiopods, phoronids and bryozoans) confirm the Lophotrochozoa concept. Proc R Soc B-Biol Sci, 275(1645), 1927–1933.

    Article  Google Scholar 

  • Herlant-Meewis, H. (1964). Regeneration in annelids. Adv Morphogen, 4, 155–215.

    Article  CAS  Google Scholar 

  • Hernandez, A.M., & Ryan, J.F. (2019). Six-state amino acid recoding is not an effective strategy to offset the effects of compositional heterogeneity and saturation in phylogenetic analyses. bioRxiv 729103. https://doi.org/10.1101/729103.

  • Hyman, L. H. (1959). The invertebrates: smaller coelomates groups. New York: McGraw Hill.

    Google Scholar 

  • Jeffroy, O., Brinkmann, H., Delsuc, F., & Philippe, H. (2006). Phylogenomics: the beginning of incongruence? Trends Genet, 22(4), 225–231.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, M., Furuya, H., & Holland, P. W. H. (1999). Dicyemids are higher animals. Nature, 401, 762.

    Article  CAS  PubMed  Google Scholar 

  • Kocot, K. M. (2016). On 20 years of Lophotrochozoa. Org Divers Evol, 16(2), 329–343.

    Article  Google Scholar 

  • Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., Santos, S. R., Schander, C., Moroz, L. L., Lieb, B., & Halanych, K. M. (2011). Phylogenomics reveals deep molluscan relationships. Nature, 477, 452–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kocot, K. M., Struck, T. H., Merkel, J., Waits, D. S., Todt, C., Brannock, P. M., Weese, D. A., Cannon, J. T., Moroz, L. L., Lieb, B., & Halanych, K. M. (2017). Phylogenomics of Lophotrochozoa with consideration of systematic error. Syst Biol, 66(2), 256–282.

    CAS  PubMed  Google Scholar 

  • Kozloff, E. N. (1969). Morphology of the orthonectid Rhopalura ophiocomae. J Parasitol, 55(1), 171–195.

    Article  Google Scholar 

  • Laumer, C. E., Bekkouche, N., Kerbl, A., Goetz, F., Neves, R. C., Sorensen, M. V., et al. (2015a). Spiralian phylogeny informs the evolution of microscopic lineages. Curr Biol, 25, 2000–2006.

    Article  CAS  PubMed  Google Scholar 

  • Laumer, C. E., Hejnol, A., & Giribet, G. (2015b). Nuclear genomic signals of the ‘microturbellarian’ roots of platyhelminth evolutionary innovation. eLife, 4, e05503.

    Article  CAS  PubMed Central  Google Scholar 

  • Laumer, C. E., Fernandez, R., Lemer, S., Combosch, D., Kocot, K. M., Riesgo, A., et al. (2019). Revisiting metazoan phylogeny with genomic sampling of all phyla. Proceedings of the Royal Society B: Biological Sciences, 286, 20190831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, T.-M., Kanda, M., Satoh, N., & Furuya, H. (2017). The phylogenetic position of dicyemid mesozoans offers insights into spiralian evolution. Zoological Letters, 3(1), 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lüter, C. (2000). The origin of the coelom in Brachiopoda and its phylogenetic significance. Zoomorphology, 120(1), 15–28.

    Article  Google Scholar 

  • Manylov, O. G. (1995). Regeneration in Gastrotricha—I. Light microscopical observations on the regeneration in Turbanella sp. Acta Zool, 76(1), 1–6.

    Article  Google Scholar 

  • Marlétaz, F., Peijnenburg, K. T. C. A., Goto, T., Satoh, N., & Rokhsar, D. S. (2019). A new spiralian phylogeny places the enigmatic arrow worms among gnathiferans. Curr Biol, 29(2), 312–318.

    Article  PubMed  CAS  Google Scholar 

  • Maslakova, S. A., Martindale, M. Q., & Norenburg, J. L. (2004). Vestigial prototroch in a basal nemertean, Carinoma tremaphoros (Nemertea; Palaeonemertea). Evol Dev, 6, 219–226.

    Article  CAS  PubMed  Google Scholar 

  • McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2013). Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol, 66(2), 526–538.

    Article  CAS  PubMed  Google Scholar 

  • Mikhailov, K. V., Slyusarev, G. S., Nikitin, M. A., Logacheva, M. D., Penin, A. A., Aleoshin, V. V., & Panchin, Y. V. (2016). The genome of Intoshia linei affirms orthonectids as highly simplified spiralians. Curr Biol, 26(13), 1768–1774.

    Article  CAS  PubMed  Google Scholar 

  • Morris, S. C. (1977). A redescription of the Middle Cambrian worm Amiskwia sagittiformis Walcott from the Burgess Shale of British Columbia. Paläontol Z, 51(3), 271–287.

    Article  Google Scholar 

  • Myohara, M. (2012). What role do annelid neoblasts play? A comparison of the regeneration patterns in a neoblast-bearing and a neoblast-lacking enchytraeid oligochaete. PLoS One, 7(5), e37319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano, H., & Miyazawa, H. (2019). A new species of Orthonectida that parasitizes Xenoturbella bocki: Implications for studies on Xenoturbella. Biol Bull, 236(1), 66–73.

    Article  PubMed  CAS  Google Scholar 

  • Nesnidal, M., Helmkampf, M., Meyer, A., Witek, A., Bruchhaus, I., Ebersberger, I., et al. (2013). New phylogenomic data support the monophyly of Lophophorata and an Ectoproct-Phoronid clade and indicate that Polyzoa and Kryptrochozoa are caused by systematic bias. BMC Evol Biol, 13(1), 253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nielsen, C. (2001). Animal evolution: interrelationships of the living phyla (2nd Edition ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Nielsen, C. (2012). Animal evolution - interrelationships of the living phyla (Third Edition ed.). New York: Oxford University Press Inc..

    Google Scholar 

  • Nielsen, C. (2018). Origin of the trochophora larva. R Soc Open Sci, 5(7), 180042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen, C., Eibye-Jacobsen, D., & Scharff, N. (1996). Cladistic analyses of the animal kingdom. Biol J Linn Soc, 57(4), 385–410.

    Article  Google Scholar 

  • Owre, H. B., & Bayer, F. M. (1962). The systematic position of the Middle Cambrian fossil Amiskwia Walcott. J Paleontol, 36(6), 1361–1363.

    Google Scholar 

  • Özpolat, B. D., & Bely, A. E. (2016). Developmental and molecular biology of annelid regeneration: a comparative review of recent studies. Curr Opin Genet Dev, 40, 144–153.

    Article  PubMed  CAS  Google Scholar 

  • Paps, J., Baguñà, J., & Riutort, M. (2009). Lophotrochozoa internal phylogeny: new insights from an up-to-date analysis of nuclear ribosomal genes. Proc R Soc B Biol Sci, 276(1660), 1245–1254.

    Article  CAS  Google Scholar 

  • Pawlowski, J., Montoya-Burgos, J. I., Fahrni, J. F., Wüest, J., & Zaninetti, L. (1996). Origin of the Mesozoa inferred from 18S rRNA gene sequences. Mol Biol Evol, 13(8), 1128–1132.

    Article  CAS  PubMed  Google Scholar 

  • Perez, Y., Müller, C. H. G., & Harzsch, S. (2014). The Chaetognatha: an anarchistic taxon between Protostomia and Deuterostomia. In J. W. Wägele & T. Bartolomaeus (Eds.), Deep metazoan phylogeny: the backbone of the tree of life - new insights from analyses of molecules, morphology, and theory of data analysis (pp. 49–77). Berlin: De Gruyter.

    Chapter  Google Scholar 

  • Philippe, H., Brinkmann, H., Lavrov, D. V., Littlewood, D. T. J., Manuel, M., Worheide, G., et al. (2011). Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol, 9, 3.

    Article  CAS  Google Scholar 

  • Philippe, H., & Laurent, J. (1998). How good are deep phylogenetic trees? Curr Opin Genet Dev, 8(6), 616–623.

    Article  CAS  PubMed  Google Scholar 

  • Philippe, H., & Roure, B. (2011). Difficult phylogenetic questions: more data, maybe; better methods, certainly. BMC Biol, 9(1), 91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pleijel, F., Dahlgren, T. G., & Rouse, G. W. (2009). Progress in systematics: from Siboglinidae to Pogonophora and Vestimentifera and back to Siboglinidae. Comptes Rendus Biologies, 332(2), 140–148.

    Article  PubMed  Google Scholar 

  • Probst, G. (1931). Beiträge zur Regeneration der Anneliden. I. Die Herkunft des Regenerationsmaterials bei der Regeneration des kaudalen Körperendes von Aricia foetida Claparède. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen, 124(2), 369–403.

  • Randolph, H. (1891). The regeneration of the tail in Lumbriculus. Zool Anz, 14, 154–156.

    Google Scholar 

  • Rawlinson, K. A. (2010). Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits. Front Zool, 7(1), 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rink, J. C. (2013). Stem cell systems and regeneration in planaria. Dev Genes Evol, 223(1), 67–84.

    Article  PubMed  Google Scholar 

  • Schiffer, P. H., Robertson, H. E., & Telford, M. J. (2018). Orthonectids are highly degenerate annelid worms. Curr Biol, 28(12), 1970–1974.e1973.

    Article  CAS  PubMed  Google Scholar 

  • Slyusarev, G. S., & Starunov, V. V. (2016). The structure of the muscular and nervous systems of the female Intoshia linei (Orthonectida). Org Divers Evol, 16(1), 65–71.

    Article  Google Scholar 

  • Smith, S. A., Wilson, N. G., Goetz, F. E., Feehery, C., Andrade, S. C. S., Rouse, G. W., Giribet, G., & Dunn, C. W. (2011). Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature, 480, 364–367.

    Article  CAS  PubMed  Google Scholar 

  • Sørensen, M. V. (2003). Further structures in the jaw apparatus of Limnognathia maerski (Micrognathozoa), with notes on the phylogeny of the Gnathifera. J Morphol, 255(2), 131–145.

    Article  PubMed  Google Scholar 

  • Sørensen, M. V., Funch, P., Hansen, A. J., Willerslev, E., & Olesen, J. (2000). On the phylogeny of the Metazoa in light of Cycliphora and Micrognathozoa. Zool Anz, 239, 297–318.

    Google Scholar 

  • Struck, T. (2019). Phylogeny. In G. Purschke, M. Böggemann, & W. Westheide (Eds.), Annelida (Vol. 1, pp. 37-68, Handbook of Zoology). Berlin: De Gruyter.

  • Struck, T. H., Golombek, A., Weigert, A., Franke, F. A., Westheide, W., Purschke, G., Bleidorn, C., & Halanych, K. M. (2015). The evolution of annelids reveals two adaptive routes to the interstitial realm. Curr Biol, 25(15), 1993–1999.

    Article  CAS  PubMed  Google Scholar 

  • Struck, T. H., Paul, C., Hill, N., Hartmann, S., Hosel, C., Kube, M., et al. (2011). Phylogenomic analyses unravel annelid evolution. Nature, 471(7336), 95–98.

    Article  CAS  PubMed  Google Scholar 

  • Struck, T. H., Wey-Fabrizius, A. R., Golombek, A., Hering, L., Weigert, A., Bleidorn, C., Klebow, S., Iakovenko, N., Hausdorf, B., Petersen, M., Kück, P., Herlyn, H., & Hankeln, T. (2014). Platyzoan paraphyly based on phylogenomic data supports a non-coelomate ancestry of Spiralia. Mol Biol Evol, 31, 1833–1849.

    Article  CAS  PubMed  Google Scholar 

  • Stunkard, H. W. (1954). The life-history and systematic relations of the Mesozoa. Q Rev Biol, 29(3), 230–244.

    Article  CAS  PubMed  Google Scholar 

  • Susko, E., & Roger, A. J. (2007). On reduced amino acid alphabets for phylogenetic inference. Mol Biol Evol, 24(9), 2139–2150.

    Article  CAS  PubMed  Google Scholar 

  • Telford, M. J. (2019). Evolution: arrow worms find their place on the tree of life. Curr Biol, 29(5), R152–R154.

    Article  CAS  PubMed  Google Scholar 

  • Telford, M. J., Budd, G. E., & Philippe, H. (2015). Phylogenomic insights into animal evolution. Curr Biol, 25(19), R876–R887.

    Article  CAS  PubMed  Google Scholar 

  • Temereva, E. (2017a). Morphology evidences the lophophorates monophyly: brief review of studies on the lophophore innervation. Invertebrate Zool, 14, 85–91.

    Article  Google Scholar 

  • Temereva, E. N. (2017b). Innervation of the lophophore suggests that the phoronid Phoronis ovalis is a link between phoronids and bryozoans. Sci Rep, 7(1), 14440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Temereva, E. N., & Tsitrin, E. B. (2015). Modern data on the innervation of the lophophore in Lingula anatina (Brachiopoda) support the monophyly of the lophophorates. PLoS One, 10(4), e0123040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinther, J., & Parry, L. A. (2019). Bilateral jaw elements in Amiskwia sagittiformis bridge the morphological gap between Gnathiferans and Chaetognaths. Curr Biol, 29(5), 881–888.e881.

    Article  CAS  PubMed  Google Scholar 

  • Walcott, C. (1911). Cambrian geology and paleontology, II, no. 5. Middle cambrian annelids. Smithsonian Misc Collections, 57, 109–144.

    Google Scholar 

  • Wanninger, A. (2009). Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the Tetraneuralia concept. Biol Bull, 216, 293–306.

    Article  PubMed  Google Scholar 

  • Weigert, A., Golombek, A., Gerth, M., Schwarz, F., Struck, T. H., & Bleidorn, C. (2016). Evolution of mitochondrial gene order in Annelida. Mol Phylogenet Evol, 94, 196–206.

    Article  CAS  PubMed  Google Scholar 

  • Weigert, A., Helm, C., Meyer, M., Nickel, B., Arendt, D., Hausdorf, B., Santos, S. R., Halanych, K. M., Purschke, G., Bleidorn, C., & Struck, T. H. (2014). Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol, 31(6), 1391–1401.

    Article  CAS  PubMed  Google Scholar 

  • Wey-Fabrizius, A. R., Herlyn, H., Rieger, B., Rosenkranz, D., Witek, A., Welch, D. B. M., Ebersberger, I., & Hankeln, T. (2014). Transcriptome data reveal syndermatan relationships and suggest the evolution of endoparasitism in Acanthocephala via an epizoic stage. PLoS One, 9(2), e88618.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willmer, P. (1990). Invertebrate relationships. Patterns in animal evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Yokobori, S.-I., Iseto, T., Asakawa, S., Sasaki, T., Shimizu, N., Yamagishi, A., et al. (2008). Complete nucleotide sequences of mitochondrial genomes of two solitary entoprocts, Loxocorone allax and Loxosomella aloxiata: implications for lophotrochozoan phylogeny. Mol Phylogenet Evol, 47(2), 612–628.

    Article  CAS  PubMed  Google Scholar 

  • Zattara, E. E. (2015). Transplants in annelids, nemerteans and planarians: a tool for embryology, immunology, endocrinology and regeneration research. Invertebr Surviv J, 12(1), 247–263.

    Google Scholar 

  • Zattara, E. E., Fernández-Álvarez, F. A., Hiebert, T. C., Bely, A. E., & Norenburg, J. L. (2019). A phylum-wide survey reveals multiple independent gains of head regeneration in Nemertea. Proc R Soc B Biol Sci, 286(1898), 20182524.

    Article  Google Scholar 

  • Zattara, E. E., Turlington, K. W., & Bely, A. E. (2016). Long-term time-lapse live imaging reveals extensive cell migration during annelid regeneration. BMC Dev Biol, 16(1), 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to Maite Aguado, Patrick Beckers, Alexander Kieneke, Rafael Martin-Ledo and Ole Riemann for providing pictures of lophotrochozoan representatives. Bernd Baumgart assisted in the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bleidorn.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bleidorn, C. Recent progress in reconstructing lophotrochozoan (spiralian) phylogeny. Org Divers Evol 19, 557–566 (2019). https://doi.org/10.1007/s13127-019-00412-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-019-00412-4

Keywords

Navigation