Skip to main content
Log in

Modelling with Heuristic Worked Examples in the KOMMA Learning Environment

Modellieren mit heuristischen Lösungsbeispielen in der Lernumgebung KOMMA

  • Originalarbeit
  • Published:
Journal für Mathematik-Didaktik Aims and scope Submit manuscript

Abstract

Modelling competency is considered to be an important part of mathematical competency. Although much work has been done with respect to the development and dissemination of modelling tasks, there is hardly any empirical evidence how these tasks should be integrated in the mathematics classroom. In this article we present a teaching approach based on heuristic worked examples which turned out to be a promising way of supporting initial skill acquisition within the field of modelling. We will provide an overview how the learning environment (KOMMA) was conceptualized and will present first results of a large-scale field study examining the effectiveness of example based learning for initial skill acquisition in the field of modelling. The results presented here take into account short-term as well as long-term effects on the learning of 8th-grade students. They suggest, that the participants’ modelling competencies increased significantly during the training but that long-term effects were much smaller.

Zusammenfassung

Modellierungskompetenz wird als wichtiger Teil mathematischer Kompetenz betrachtet. Trotz umfangreicher Forschungen zur Entwicklung und Dissemination von Modellierungsaufgaben gibt es kaum empirische Ergebnisse dazu, wie diese Aufgaben in den Mathematikunterricht integriert werden sollen. Wir beschreiben einen auf heuristischen Lösungsbeispielen basierenden instruktionalen Ansatz, der sich als vielversprechend für den anfänglichen Fähigkeitserwerb beim Modellieren erwiesen hat. Wir beschreiben das Konzept der verwendeten Lernumgebung (KOMMA) und berichten erste Ergebnisse einer größeren Feldstudie zur Untersuchung der Effektivität von beispielbasierten Lernumgebungen für den anfänglichen Erwerb von Modellierungskompetenzen. Die Ergebnisse beschreiben kurzfristige und langfristige Lernzuwächse bei Schülerinnen und Schülern der achten Jahrgangsstufe. Sie legen nahe, dass die Modellierungskompetenzen der Schülerinnen und Schüler während der Intervention signifikant zunahmen, langfristige Effekte aber deutlich kleiner ausfielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. KOMMA is supported by a grant from BMBF, the German Federal Ministry of Education and Research (PLI3032).

  2. SEASITE means self-explanation activity supported by instructional explanations.

  3. The IRT-analysis was based on a sample of 1657 persons who took part in all tests but were assigned to different learning environments (paper and pencil material instead of computer based instruction or material asking for a higher degree of self-regulation; see above for details).

References

  • Aleven, V., & Koedinger, K. (2002). An effective metacognitive strategy: learning by doing and explaining with a computer-based Cognitive Tutor. Cognitive Science, 26(2), 147–179.

    Article  Google Scholar 

  • Atkinson, R., Derry, S., Renkl, A., & Wortham, D. (2000). Learning from examples: instructional principles from the worked examples research. Review of Educational Research, 70, 181–214.

    Google Scholar 

  • Atkinson, R., Renkl, A., & Merrill, M. (2003). Transitioning from studying examples to solving problems: combining fading with prompting fosters learning. Journal of Educational Psychology, 95, 774–783.

    Article  Google Scholar 

  • Blomhøj, M., & Jensen, T. (2003). Developing mathematical modeling competence: conceptual clarification and educational planning. Teaching Mathematics and its Applications, 22(3), 123–139.

    Article  Google Scholar 

  • Blomhøj, M., & Kjeldsen, T. (2006). Teaching mathematical modeling through project work: experiences from an in-service course for upper secondary teachers. Zentralblatt für Didaktik der Mathematik, 38(2), 163–177.

    Article  Google Scholar 

  • Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht: Trends und Perspektiven. In G. Kadunz, H. Kautschitsch, G. Ossimitz, & E. Schneider (Eds.), Trends und Perspektiven: Beiträge zum 7. Internationalen Symposium zur Didaktik der Mathematik (pp. 15–38). Wien: Hölder-Pichler-Tempsky.

    Google Scholar 

  • Blum, W., & Kaiser, G. (1997) Vergleichende empirische Untersuchungen zu mathematischen Anwendungsfähigkeiten von englischen und deutschen Lernenden (unpublished document). Cited according to K. Maaß (2006). What are modeling competencies? Zentralblatt für Didaktik der Mathematik, 38(2), 113–142.

  • Blum, W. & Leiss, D., Investigating quality mathematics teaching—the DISUM project. In C. Bergsten & B. Grevholm (Eds.), Developing and researching quality in mathematics teaching and learning. Proceeding of MADIF-5 and SMDF. The fifth swedish mathematics education research seminar and swedish association for research in mathematics education (pp. 3–16). Linköping: Sweden.

  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modeling problems? The example sugarloaf and the DISUM project. In C. Haines, P. Galbraith, S. Blum, & W. Khan (Eds.), Mathematical modelling (ICTMA 12). Education, engineering and economics (pp. 1623–1633). Chichester: Horwood Publishing.

    Google Scholar 

  • Boero, P. (1999). Argumentation and mathematical proof: a complex, productive, unavoidable relationship in mathematic and mathematics education. International Newsletter on the Teaching and Learning of Mathematical Proof, pp. 7–8.

  • Bortz, J., & Döring, N. (2002). Forschungsmethoden und Evaluation für Human- und Sozial-wissenschaftler. Heidelberg: Springer.

    Google Scholar 

  • Bortz, J. (2005). Statistik für Human- und Sozialwissenschaftler. Heidelberg: Springer.

    Google Scholar 

  • Brandt, S. (2008). Estimation of a Rasch Model including subdimensions. In M. von Davier & D. Hastedt (Eds.), Issues and methodologies in large-scale assessments (pp. 53–71). Hamburg: International Educational Achievement and Educational Testing Service Research Institute.

    Google Scholar 

  • Carbonell, J. (1986). Derivational analogy: a theory of reconstructive problem solving and expertise acquisition. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine learning: an artificial intelligence approach (pp. 371–392). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Carroll, W. (1994). Using worked examples as an instructional support in the algebra classroom. Journal of Educational Psychology, 86(3), 360–367.

    Article  Google Scholar 

  • Chi, M., Bassok, M., Lewis, M., Reimann, P., & Glaser, R. (1989). Self-explanation: how students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145–182.

    Google Scholar 

  • Haines, C., & Crouch, R. (2006). Getting to grips with real world contexts: developing research in mathematical modeling. In M. Bosch (Ed.), CERME 4Conference of European research in mathematics education (pp. 1655–1665). Guixols: Spain.

  • Haines, C., Crouch, R., & Fitzharris, A. (2003). Deconstruction mathematical modeling: approaches to problem solving. In Q.-X. Ye, W. Blum, K. Houston, & Q.-Y. Jiang (Eds.), Mathematical modeling in education and culture: ICTMA 10—International community of teachers of mathematical modeling and applications (pp. 41–53). Chichester: Horwood Publishing.

    Google Scholar 

  • Hilbert, T., Renkl, A., Kessler, S., & Reiss, K. (2008). Learning to prove in geometry: learning from heuristic examples and how it can be supported. Learning & Instruction, 18, 54–65.

    Article  Google Scholar 

  • Hugener, I., Pauli, C., Reusser, K., Lipowsky, F., Rakoczy, K., & Klieme, E. (2008). Teaching patterns and learning quality in Swiss and German mathematics lessons. Learning & Instruction, 19, 66–78.

    Article  Google Scholar 

  • Jensen, T. (2007). Assessing mathematical modeling competencies. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling (ICTMA 12): Education, engineering and economics (pp. 141–148). Chichester: Horwood.

    Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modeling in mathematics education. Zentralblatt für Didaktik der Mathematik, 38(3), 302–310.

    Article  Google Scholar 

  • Kultusministerkonferenz (2003). Bildungsstandards im Fach Mathematik für den mittleren Schulabschluss. München: Wolters Kluwer.

    Google Scholar 

  • LeFevre, J., & Dixon, P. (1986). Do written instructions need examples? Cognition & Instruction, 3, 1–30.

    Article  Google Scholar 

  • Legé, J. (2005). Approaching minimal conditions for the introduction of mathematical modeling. Teaching Mathematics and its Applications, 24(2/3), 90–96.

    Article  Google Scholar 

  • Leiss, D. (2007). „Hilf mir es selbst zu tun“: Lehrerinterventionen beim mathematischen Modellieren. Hildesheim: Franzbecker.

    Google Scholar 

  • OECD (2003). The PISA 2003 assessment framework: mathematics, reading, science and problem-solving knowledge and skills. Paris: OECD (Organization for Economic Cooperation and Development).

    Google Scholar 

  • Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: recent developments. Educational Psychologist, 38(1), 1–4.

    Article  Google Scholar 

  • Paas, F., & Van Merriënboer, J. (1994). Variability of worked examples and transfer of geometrical problem solving skills: a cognitive load approach. Journal of Educational Psychology, 86, 122–133.

    Article  Google Scholar 

  • Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning & Instruction, 12(1), 61–86.

    Article  Google Scholar 

  • Quilici, J., & Mayer, R. (1996). Role of examples in how students learn to categorize statistics word problems. Journal of Educational Psychology, 88(1), 144–161.

    Article  Google Scholar 

  • Recker, M., & Pirolli, P. (1995). Modeling individual differences in students’ learning strategies. The Journal of the Learning Sciences, 4(1), 1–38.

    Article  Google Scholar 

  • Reiss, K., Heinze, A., Kuntze, S., Kessler, S., Rudolph-Albert, F., & Renkl, A. (2006). Mathematiklernen mit heuristischen Lösungsbeispielen. In M. Prenzel & L. Allolio-Näcke (Eds.), Untersuchungen zur Bildungsqualität von Schule: Abschlussbericht des DFG-Schwerpunktprogramms (pp. 194–208). Münster: Waxmann.

    Google Scholar 

  • Reiss, K., Pekrun, R., Kuntze, S., Lindmeier, A., Nett, U., & Zöttl, L. (2007). KOMMA: Ein Projekt zur Entwicklung und Evaluation einer computergestützten Lernumgebung. GDM-Mitteilungen, 83, 16–17.

    Google Scholar 

  • Reiss, K., & Renkl, A. (2002). Learning to prove: the idea of heuristic examples. Zentralblatt für Didaktik der Mathematik, 34(1), 29–35.

    Article  Google Scholar 

  • Renkl, A. (2002a). Learning from worked-out examples via self-explanations: how it can(not) be fostered. In W. Grey & C. Schunn (Eds.), Proceedings of the 24th annual conference of the cognitive science society (p. 49). Mahwah: Erlbaum.

    Google Scholar 

  • Renkl, A. (2002b). Worked-out examples: instructional explanations support learning by self-explanations. Learning & Instruction, 12, 529–556.

    Article  Google Scholar 

  • Rost, J. (2004). Lehrbuch Testtheorie – Testkonstruktion (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Schelhorn, S. E., Griego, J., & Schmid, U. (2007). Transformational and derivational strategies in analogical problem solving. Cognitive Processing, 8(1), 45–55.

    Article  Google Scholar 

  • Seidel, T., & Prenzel, M. (2006). Stability of teaching patterns in physics instruction: findings from a video study. Learning & Instruction, 16, 228–240.

    Article  Google Scholar 

  • Stark, R. (1999). Lernen mit Lösungsbeispielen: Einfluss unvollständiger Lösungsbeispiele auf Beispielelaboration, Lernerfolg und Motivation. Göttingen: Hogrefe.

    Google Scholar 

  • Sweller, J. (2003). Evolution of human cognitive architecture. Psychology of Learning and Motivation, 43, 215–266.

    Article  Google Scholar 

  • Sweller, J., & Cooper, G. (1985). The use of worked examples as substitute for problem solving in learning algebra. Cognition & Instruction, 2, 59–89.

    Article  Google Scholar 

  • Sweller, J., Van Merriënboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296.

    Article  Google Scholar 

  • Tamir, P. (1996). Discovery learning and teaching. In E. de Corte & F. Weinert (Eds.), International encyclopaedia of developmental and instructional psychology (pp. 355–361). Oxford: Pergamon.

    Google Scholar 

  • Treilibs, V., Burkhardt, H., & Low, B. (1980). Formulation processes in mathematical modeling. Nottingham: Shell Centre for Mathematical Education.

    Google Scholar 

  • van Gog, T., Paas, F., & Van Merriënboer, J. (2004). Process-oriented worked examples: improving transfer performance through enhanced understanding. Instructional Science, 32, 83–98.

    Article  Google Scholar 

  • van Merriënboer, J., & Kirschner, P. (2007). Ten steps to complex learning. New York: Routledge.

    Google Scholar 

  • Weinert, F. E. (2001). Vergleichende Leistungsmessung in Schulen: Eine umstrittene Selbstverständlichkeit. In F. E. Weinert (Ed.) Leistungsmessungen in Schulen (pp. 17–31). Weinheim: Beltz.

    Google Scholar 

  • Wright, B., & Linacre, M. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions Contents, 8(3), 370. Retrieved February 11, 2009, from http://www.rasch.org/rmt/rmt83b.htm.

    Google Scholar 

  • Zhu, X., & Simon, H. A. (1987). Learning mathematics from examples and by doing. Cognition & Instruction, 4, 137–166.

    Article  Google Scholar 

  • Zöttl, L., & Reiss, K. (2008). Modellierungskompetenz fördern mit heuristischen Lösungsbeispielen. Beiträge zum Mathematikunterricht, 2008, 189–192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Ufer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zöttl, L., Ufer, S. & Reiss, K. Modelling with Heuristic Worked Examples in the KOMMA Learning Environment. J Math Didakt 31, 143–165 (2010). https://doi.org/10.1007/s13138-010-0008-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13138-010-0008-9

Keywords

Mathematics Subject Classification (2000)

Navigation