Skip to main content
Log in

Numerical modeling of coastal aquifer karst processes by means of coupled simulations of density-driven flow and reactive solute transport phenomena

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Coastal karst features are supposed to be generated by the coupling between the infiltration of undersaturated rain water together with mixing from the fresh–saltwater interface. A coupled density-driven flow and reactive solute transport numerical model is presented which is able to duplicate conditions in such a morphogenetic conceptual model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Appelo C, Postma D (1994) Geochemistry, groundwater and pollution. A.A. Balkema, Amsterdam

    Google Scholar 

  • Bauer-Gottwein P, Langer T, Prommer H, Wolski P, Kinzelbach W (2007) Okavango Delta Islands: interaction between density-driven flow and geochemical reactions under evapo-concentration. J Hydrol 335(3–4):389–405

    Article  Google Scholar 

  • Christensen F, Engesgaard P, Kipp K (2001) A reactive transport investigation of seawater intrusion experiment in a shallow aquifer, Skansehage, Denmark. In: Proceedings of the first international conference on saltwater intrusion and coastal aquifers, Essaouira, Morocco

  • Encinas JA (1997) Inventari espeleològic de les Illes Balears. Endins. 21 103–128, Palma de Mallorca

  • Freedman V, Ibaraki M (2002) Effects of chemical reactions on density-dependent fluid flow: on the numerical formulation and the development of instabilities. Adv Water Resour 25(4):439–453

    Article  Google Scholar 

  • Garrels R, Christ C (1965) Solutions, minerals, and equilibria. Freeman, Cooper and Company, San Fransisco

  • Ginés J (2001) El karst litoral en el levante de Mallorca: una aproximación al conocimiento de su morfologénesis y cronología. Endins 24

  • Guo W, Langevin C (2002) User’s guide to SEWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. United States Geological Survey

  • Hanshaw BB, Van Driel JN (1984) Role of groundwater in shaping the eastern coastline of the Yucatan Peninsula, Mexico. Groundwater as a geomorphic agent. Allen and Unwin, Boston, pp 281–293

  • Helgeson H, Kirkham D (1974) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. I. Summary of the thermodynamic/electrostatic properties of the solvent. Am J Sci 274(10):1089–1198

    Article  Google Scholar 

  • James JM, Rogers P, Spate AP (1989) The role of missing corrosion in the genesis of the caves of the Nullarbor plain, Australia. In: Proc 10th Int Congress Speleol 1. pp 263–265, Budapest

  • Lasaga AC, Soler JM, Ganor J, Burch TE, Nagy KL (1994) Chemical weathering rate laws and global geochemical cycles. Geochim Cosmochim Acta 58:2361–2386

    Article  Google Scholar 

  • Mangold D, Tsang C (1991) A summary of subsurface hydrological and hydrochemical models. Rev Geophys 29(1):51–80

    Article  Google Scholar 

  • Mao X, Prommer H, Barry D, Langevin C, Panteleit B, Li L (2006) Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environ Model Softw 21(5):615–628

    Article  Google Scholar 

  • Molinero J, Raposo J, Galindez J, Arcos D, Guimera J (2008) Coupled hydrogeological and reactive transport modelling of the Simpevarp area (Sweden). Appl Geochem 23(7):1957–1981

    Article  Google Scholar 

  • Olivella S, Gens A, Carrera J, Alonso J (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Comput 13(7):87–112

    Article  Google Scholar 

  • Parkhurst D (1995) User’s guide to PHREEQC—a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations

  • Plummer L (1975) Mixing of sea water with calcium carbonate ground water. Memoir, 219

  • Post V, Prommer H (2007) Multicomponent reactive transport simulation of the Elder problem: effects of chemical reactions on salt plume development. Water Resour Res 43(10):W10404

    Article  Google Scholar 

  • Rezaei M, Sanz E, Raeisi E, Ayora C, Vázquez-Suñé E, Carrera J (2005) Reactive transport modeling of calcite dissolution in the fresh–salt water mixing zone. J Hydrol 311(1–4):282–298

    Article  Google Scholar 

  • Saaltink M, Ayora C, Carrera J (1998) A mathematical formulation for reactive transport that eliminates mineral concentrations. Water Resour Res 34(7):1649–1656

    Article  Google Scholar 

  • Saaltink M, Batlle F, Ayora C, Carrera J, Olivella S (2004a) RETRASO, a code for modeling reactive transport in saturated and unsaturated porous media. Geol Acta 2(3):235–251

    Google Scholar 

  • Saaltink MW, Carrera J, Olivella S (2004b) Mass balance errors when solving the convective form of the transport equation in transient flow problems Water Resour Res 40:W05107

    Article  Google Scholar 

  • Sanford W, Konikow L (1989) Simulation of calcite dissolution and porosity changes in saltwater mixing zones in coastal aquifers. Water Resour Res 25(4):655–667

    Article  Google Scholar 

  • Smart PL, Dawans JM, Whitaker FF (1988) Carbonate dissolution in a modern mixing zone, South Andros, Bahamas. Nature 335:811–813

    Article  Google Scholar 

  • van der Lee J, Windt LD (2001) Present state and future directions of modeling of geochemistry in hydrogeological systems. J Contam Hydrol 47(2–4):265–282

    Google Scholar 

  • Wolery T (1992) EQ3/6, a software package for geochemical modeling of aqueous systems: package overview and installation guide (Version 7.0). Technical report, UCRL-MA–110662-Pt. 1, Lawrence Livermore National Lab., CA (United States)

  • Yeh G, Tripathi V (1991) A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour Res 27(12):3075–3094

    Article  Google Scholar 

  • Zhang H, Schwartz F (1995) Multispecies contaminant plumes in variable density flow systems. Water Resour Res 31(4):837–847

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge J. Molinero Huguet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sáinz García, Á.M., Molinero Huguet, J.J. & Saaltink, M.W. Numerical modeling of coastal aquifer karst processes by means of coupled simulations of density-driven flow and reactive solute transport phenomena. Carbonates Evaporites 26, 19–27 (2011). https://doi.org/10.1007/s13146-011-0051-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-011-0051-8

Keywords

Navigation