Skip to main content
Log in

Heterologously expressed carbonic anhydrase from Bacillus mucilaginosus promoting CaCO3 formation by capturing atmospheric CO2

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Carbonic anhydrase (CA) can catalyse the reversible hydration of CO2. However, whether the single CA of Bacillus mucilaginosus is helpful to the capture of CO2 and the induction of CaCO3 formation is still ambiguous. To answer that question and foster a better understanding of the function of CAs in bio-geological processes, we cloned five CA genes of B. mucilaginosus into Escherichia coli to form engineering bacteria. Heterologously expressed CA (CA4) was used to test whether or not it can promote carbonate formation with CaCl2 and CO2 as the substrates. Experimental results showed that CA4 can help crystal formation in a relatively short period of time. EDS data confirmed that these crystals are CaCO3. It suggests that CO2 may be more easily captured by CA. Moreover, the differences were significant in both the size and morphology of CaCO3 crystals between treatments with or without CA. The results provide new insights into carbonate-induced synthesis by microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achal V, Pan XL (2011) Characterization of urease and carbonic anhydrase producing bacteria and their role in calcite precipitation. Curr Microbiol 62(3):894–902

    Article  Google Scholar 

  • Barbero R, Carnelli Lino, Simon Anna, Kao Albert, Monforte Alessandra d’Arminio, Riccò Moreno, Bianchi Daniele, Belcher Angela (2013) Engineered yeast for enhanced CO2 mineralization. Energ Environ Sci 6(2):660–674

    Article  Google Scholar 

  • Bohm J, Heimann RB, Hengst M, Roewer R, Schindler J (1999) Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN), and La3Ga5.5Ta0.5O14 (LGT): part I. J Cryst Growth 204(1–2):128–136

    Article  Google Scholar 

  • Cruz J, Alves AC, LeCain D, Ellis D, Morgan J (2014) Effect of elevated CO2 concentration and nitrate: ammonium ratios on gas exchange and growth of cassava (Manihot esculenta Crantz). Plant Soil 374(1–2):33–43

    Article  Google Scholar 

  • Dhami NK, Reddy M, Mukherjee A (2014) Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Appl Biochem Biotechnol 172(5):2552–2561

    Article  Google Scholar 

  • Dupraz C, Visscher PT, Baumgartner LK, Reid RP (2004) Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51(4):745–765

    Article  Google Scholar 

  • Ehrlich HL (1996) How microbes influence mineral growth and dissolution. Chem Geol 132(1–4):5–9

    Article  Google Scholar 

  • Guilloton MB, Korte JJ, Lamblin AF, Fuchs JA, Anderson PM (1992) Carbonic anhydrase in Escherichia coli. A product of the cyn operon. J Biol Chem 267(6):3731–3734

    Google Scholar 

  • Gutknecht J, Bisson MA, Tosteson FC (1977) Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol 69(6):779–794

    Article  Google Scholar 

  • Han J, Lian B, Ling H (2013) Induction of calcium carbonate by Bacillus cereus. Geomicrobiol J 30(8):682–689

    Article  Google Scholar 

  • Innocenti A, Mühlschlegel FA, Hall RA, Steegborn C, Scozzafava A, Supuran CT (2008) Carbonic anhydrase inhibitors: inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with simple anions. Bioorg Med Chem Lett 18(18):5066–5070

    Article  Google Scholar 

  • Jo BH, Kim IG, Seo JH, Kang DG, Cha HJ (2013) Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Appl Environ Microbiol 79(21):6697–6705

    Article  Google Scholar 

  • Khalifah RG (1971) The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 246(8):2561–2573

    Google Scholar 

  • Le Quéré C, Moriarty R, Andrew RM, Peters GP, Ciais P, Friedlingstein P, Jones SD, Sitch S, Tans P, Arneth A (2014) Global carbon budget 2014. Earth Syst Sci Data Discuss 7(2):521–610

    Article  Google Scholar 

  • Lee S, Park JH, Kwak D, Cho K (2010) Coral mineralization inspired CaCO3 deposition via CO2 sequestration from the atmosphere. Cryst Growth Des 10(2):851–855

    Article  Google Scholar 

  • Li W, Liu L, Chen W, Yu L, Li W, Yu H (2010) Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors. Process Biochem 45(6):1017–1021

    Article  Google Scholar 

  • Lian B, Hu QN, Chen J, Ji JF, Teng HH (2006) Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim Cosmochim Acta 70(22):5522–5535

    Article  Google Scholar 

  • Lian B, Yuan D, Liu Z (2011) Effect of microbes on karstification in karst ecosystems. Chin Sci Bull 56(35):3743–3747

    Article  Google Scholar 

  • Lindskog S, Coleman JE (1973) The catalytic mechanism of carbonic anhydrase. Proc Natl Acad Sci USA 70(9):2505–2508

    Article  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev 47(4):595–781

    Google Scholar 

  • Maren TH, Rayburn CS, Liddell NE (1976) Inhibition by anions of human red cell carbonic anhydrase B: physiological and biochemical implications. Science 191(4226):469–472

    Article  Google Scholar 

  • Matter JM, Kelemen PB (2009) Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat Geosci 2(12):837–841

    Article  Google Scholar 

  • Merlin C, Masters M, McAteer S, Coulson A (2003) Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol 185(21):6415–6424

    Article  Google Scholar 

  • Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46(3):921–926

    Article  Google Scholar 

  • Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 93(18):9657–9660

    Article  Google Scholar 

  • Moya A, Tambutté Sylvie, Bertucci Anthony, Tambutté Eric, Lotto Séverine, Vullo Daniela, Supuran Claudiu T, Allemand Denis, Zoccola Didier (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata—characterization, localization, and role in biomineralization. J Biol Chem 283(37):25475–25484

    Article  Google Scholar 

  • Perez-Gonzalez T, Jimenez-Lopez C, Neal AL, Rull-Perez F, Rodriguez-Navarro A, Fernandez-Vivas A, Iañez-Pareja E (2010) Magnetite biomineralization induced by Shewanella oneidensis. Geochim Cosmochim Acta 74(3):967–979

    Article  Google Scholar 

  • Power IM, Harrison AL, Dipple GM, Southam G (2013) Carbon sequestration via carbonic anhydrase facilitated magnesium carbonate precipitation. Int J Greenh Gas Control 16:145–155

    Article  Google Scholar 

  • Reith F, Etschmann B, Dart RC, Brewe DL, Vogt S, Schmidt Mumm A, Brugger J (2011) Distribution and speciation of gold in biogenic and abiogenic calcium carbonates—implications for the formation of gold anomalous calcrete. Geochim Cosmochim Acta 75(7):1942–1956

    Article  Google Scholar 

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24(4):335–366

    Article  Google Scholar 

  • Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276(52):48615–48618

    Article  Google Scholar 

  • Wallin R, Wajih N, Greenwood GT, Sane DC (2001) Arterial calcification: a review of mechanisms, animal models, and the prospects for therapy. Med Res Rev 21(4):274–301

    Article  Google Scholar 

  • Xiao LL, Hao JC, Wang WY, Lian B, Shang GD, Yang YW, Liu CQ, Wang SJ (2014) The up-regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+ deficiency and the heterologously expressed enzyme promotes calcite dissolution. Geomicrobiol J 31(7):632–641

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (Grant No. 41373078), the National Key Basic Research Program of China (Grant No. 2013CB956700) and the Scientific Innovation Research Program of Graduates at Nanjing Normal University (KYLX_0712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Lian, B. Heterologously expressed carbonic anhydrase from Bacillus mucilaginosus promoting CaCO3 formation by capturing atmospheric CO2 . Carbonates Evaporites 31, 39–45 (2016). https://doi.org/10.1007/s13146-015-0239-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13146-015-0239-4

Keywords

Navigation