Skip to main content

Advertisement

Log in

Stand Structure and Aboveground Biomass of a Pelliciera rhizophorae Mangrove Forest, Gulf of Monitjo Ramsar Site, Pacific Coast, Panama

  • Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Mangroves provide several ecosystems services including carbon storage. Aboveground biomass as a proxy for carbon storage and stand structure were investigated in nine plots located in a riverine Pelliciera rhizophorae forest, Gulf of Montijo Ramsar Site, Pacific Coast, Panama. Aboveground biomass for all trees above 2 cm was estimated using common pan-tropical mangrove biomass regression models. Despite a comparatively low tree species diversity there was a considerable variation in stand structure and biomass among the plots. P. rhizophorae dominated the river and center plots with tree densities between 1,275 and 10,075 trees ha−1. Further inland, species composition shifted towards a Rhizophora racemosa dominated forest. Lower density of larger trees in the inland plots may be due to small-scale cutting of trees at the forest margin. Across all plots, P. rhizophorae was smaller in diameter and height than R. racemosa. Aboveground biomass ranged from 76 Mg ha−1 to 335 Mg ha−1 (average: 176 Mg ha−1) and was closely related to stem density and basal area. Compared to other neotropical mangrove forests this riverine P. rhizophorae forest stores substantial amounts of biomass. Conservation strategies have to be put in place to maintain the threatened P. rhizophorae forest in Central America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environmental Conservation 29:331–349

    Article  Google Scholar 

  • Autoridad de los Recursos Acuaticos de Panama (ARAP) (2008a) Por medio del cual se establecen todas las areas de humedales marino-costeros, particularmente los manglares de la República de Panamá como zonas especiales de manejo marino-costero y se dictan otras medidas. Resuelto No. 1 de 29 de enero de 2008

  • Autoridad de los Recursos Acuaticos de Panama (ARAP) (2008b) Por la cual se aprueban algunas tasas y cobros por servicios que presta la Autoridad de los Recursos Acuáticos de Panamá. Resolución No. 1 de 26 de febrero de 2008

  • Autoridad Nacional del Ambiente (ANAM), Agencia Española de Cooperación Internacional (AECI) (2004) Directrices de gestión para la conservación y desarrollo integral de un humedal centroamericano, distrito de Montijo (litoral del Pacífico de Panamá). Cooperación Española, Universidad de Sevilla y Fundación DEMUCA, Panamá

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecological Monographs 81:169–193

    Article  Google Scholar 

  • Blanco JF, Estrada EA, Ortiz LF, Urrego LE (2012) Ecosystem-wide impacts of deforestation in mangroves: the Urab’a Gulf (Colombian Caribbean) case study. International Scholarly Research Network. ISRN Ecology 2012, 958709. doi:10.5402/2012/958709

    Article  Google Scholar 

  • Bouillon S, Borges AV, Castaneda-Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middleburg JJ, Rivera-Monroy VH, Smith TJ III, Twilley RR (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22:1–12

    Article  Google Scholar 

  • Brown S, Lugo AE (1982) A comparison of structural and functional characteristics of saltwater and freshwater forested wetlands. In: Gopal B, Turner RE, Wetzel RG (eds) Wetlands ecology and management. International Scientific, Jaipur, pp 109–130

    Google Scholar 

  • Calderon-Saenz E (1984) Occurrence of the mangrove, Pelliciera rhizophorae, on the Caribbean coast of Colombia with biogeographical notes. Bulletin of Marine Science 35:105–110

    Google Scholar 

  • Cannicci S, Burrows D, Fratini S, Smith TJ III, Offenberg J, Dahdouh-Guebas F (2008) Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review. Aquatic Botany 89:186–200

    Article  Google Scholar 

  • Castillo-Cardenas MF, Toro-Perea N (2011) Low genetic diversity within Caribbean patches of Pelliciera rhizophorae, a Neotropical mangrove species with reduced distribution. Aquatic Botany 96:48–51

    Article  Google Scholar 

  • Centro Regional Ramsar para la Capacitacion e Investigacion sobre Humedales pare el Hemisferio Occidental (CREHO) (2010) Inventario de los humedales continentales y costeros de Panamá. Flores De Gracia E, Gallardo M, Núñez E (Eds), Panamá, 255 pp

  • Chave J, Andalo C, Brown S, Cairns MA, Chamber JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters 12:351–366

    Article  PubMed  Google Scholar 

  • Chen R, Twilley RR (1999) Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River estuary, Florida. Estuaries 22:955–970

    Article  Google Scholar 

  • Cintron G, Schaeffer-Novelli SY (1984) Methods for studying mangrove structure. In: Snedaker SC, Snedaker JG (eds) The mangrove ecosystem: research methods. UNESCO, Paris

    Google Scholar 

  • Clough B, Scott K (1989) Allometric relationships for estimating aboveground biomass in six mangrove species. Forest Ecology and Management 27:117–127

    Article  Google Scholar 

  • Condit RG, Robinson DW, Ibanez R, Salomón A, Sanjur A, Martínez R, Stallard RF, García T, Angehr GR, Petit L, Wright SJ, Robinson TR, Heckadon-Moreno S (2001) The status of the Panama Canal watershed and its biodiversity at the beginning of the 21st century. BioScience 51:135–144

    Article  Google Scholar 

  • Cordero LL (1971) Report on a wood testing programme carried out for UNDP/SF project 234, Inventory and Forest Demonstrations Panama. Part III. Physical and mechanical properties of 113 species. Report prepared for the Food and Agricultural Organization of the United Nations (FAO)

  • Dahdouh-Guebas F, VanHiel E, Chan JCW, Jayatissa LP, Koedam N (2005) Qualitative distinction of congeneric and introgressive mangrove species in mixed patchy forest assemblages using high spatial resolution remotely sensed imagery (IKONOS). Systematics and Biodiversity 2:113–119

    Article  Google Scholar 

  • Day JW Jr, Conner WH, Ley-Lou F, Day RH, Machado Navarro A (1987) The productivity and composition of mangrove forests, Laguna de Términos, Mexico. Aquatic Botany 27:267–284

    Article  Google Scholar 

  • Delgado P, Hensel PF, Jimenez JA, Day JW (2001) The importance of propagule establishment and physical factors in mangrove distributional patterns in a Costa Rican estuary. Aquatic Botany 71:157–178

    Article  Google Scholar 

  • Duke NC (2001) Gap creation and regenerative processes driving diversity and structure of mangrove systems. Wetlands Ecology and Management 9:257–269

    Article  Google Scholar 

  • Ellison A, Farnsworth E (1993) Seedling survivorship, growth and response to disturbance in Belizean mangal. American Journal of Botany 80:1137–1145

    Article  Google Scholar 

  • Ellison A, Farnsworth E, Moore G (2010) Pelliciera rhizophorae. In: IUCN 2012. IUCN Red list of threatened species. Version 2012.1. www.iucnredlist.org. Accessed 17 September 2012

  • Ellison J, Koedam NE, Wang Y, Primavera J, Jin Eong O, Wan-Hong Yong J, Ngoc Nam V (2010) Acrostichum aureum. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.1. www.iucnredlist.org. Accessed 27 August 2012

  • FAO (2007) The world’s mangroves 1980–2005. Forestry Department, Food and Agriculture Organization of the United Nations (FAO), Rome. FAO Forestry Paper 153

  • Feller IC (2002) The role of herbivory by wood-boring insects in mangrove ecosystems in Belize. Oikos 97:167–176

    Article  Google Scholar 

  • Fromard F, Puig H, Mougin E, Marty G, Betoulle JL, Cadamuro L (1998) Structure, above-ground biomass and dynamics of mangrove ecosystems: new data from French Guiana. Oecologia 115:39–53

    Article  Google Scholar 

  • Golley FB, McGinnis JT, Clements RG, Child GI, Duever MJ (1969) The structure of tropical forests in Panama and Colombia. Bioscience 19:693–698

    Article  CAS  Google Scholar 

  • Imbert D, Rollet B (1989) Phytomasse aerienne et production primaire dans la mangrove du Grand Cul-de-Sac marin (Guadeloupe, Antilles francaises). Bulletin D’Ecologie 20:27–39

    Google Scholar 

  • Jaramillo C, Bayona G (2000) Mangrove distribution during the Holocene in Tribugá Gulf, Colombia. Biotropica 32:14–22

    Google Scholar 

  • Jimenez JA (1984) A hypothesis to explain the reduced distribution of the mangrove Pelliciera rhizophorae Tr. & Pl. Biotropica 16:304–308

    Article  Google Scholar 

  • Jimenez JA (1992) Mangrove forests of the Pacific coast of Central America. In: Seeliger U (ed) Coastal plant communities of Latin America. Academic, San Diego, pp 259–267

    Chapter  Google Scholar 

  • Jimenez JA (1999) Ambiente, distribucíon y características estructurales en los manglares del Pacífico de Centro América: contrastes climáticos. In: Yáñez-Arancibia A, Lara-Domínguez, AL (eds) Ecosistemas de Manglar en América Tropical. Instituto de Ecologia, A.C. Xalapa, México; UICN/ORMA Costa Rica; NOAA/NMFS Silver Spring MD USA, pp 51–70

  • Jimenez JA, Sauter K (1991) Structure and dynamics of mangrove forests along a flooding gradient. Estuaries 14:49–56

    Article  Google Scholar 

  • Komiyama A, Poungparn S, Kato S (2005) Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology 21:471–477

    Article  Google Scholar 

  • Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass and productivity of mangrove forests: a review. Aquatic Botany 89:128–137

    Article  Google Scholar 

  • Lacerda LD, Conde JE, Bacon PR, Alarcon C, D’Croz L, Kjerfve B, Polania J, Vannucci M (1993) Mangrove ecosystems of Latin America and the Caribbean: a summary. In: Lacerda LD (ed) Conservation and sustainable utilization of mangrove forests in Latin America and Africa Regions. Part I - Latin America. ITTO/International Society for Mangrove Ecosystems, Okinawa, Japan, pp 1–42

    Google Scholar 

  • Lopez-Hoffman L, Monroe IE, Narvaez E, Martinez-Ramos M, Ackerly DD (2006) Sustainability of mangrove harvesting: how do harvesters’ perceptions differ from ecological analysis? Ecology and Society 11:art. 14

    Google Scholar 

  • Lovelock CE, Feller IC, McKee KL, Thompson R (2005) Variation in mangrove forest structure and sediment characteristics in Bocas del Toro. Caribbean Journal of Science 41:456–464

    Google Scholar 

  • McGowan T, Cunningham SL, Guzmán HL, Mair JM, Guevara JM, Betts T (2010) Mangrove forest composition and structure in Las Perlas Archipelago, Pacific Panama. Revista Biología Tropical (International Journal of Tropical Biology) 58:857–869

    Google Scholar 

  • McKee KL (1995) Seedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physico-chemical factors. Oecologia 101:448–460

    Article  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9:552–560

    Article  Google Scholar 

  • Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Ngoc Nam V, Ong JE, Primavera JH, Salmo SG III, Sanciangco JC, Sukardjo S, Wang Y, Yong JWH (2010) The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS One 5:e10095

    Article  PubMed Central  PubMed  Google Scholar 

  • Pool DJ, Snedaker SC, Lugo AE (1977) Structure of mangrove forests in Florida, Puerto Rico, Mexico and Costa Rica. Biotropica 9:195–212

    Article  Google Scholar 

  • Ramsar (2008) Resolution X.24. Climate change and wetlands. Resolutions of the 10th Meeting of the Conference of the Contracting Parties to the Convention on Wetlands (Ramsar, Iran, 1971), Changwon, Republic of Korea, 28 October–4 November 2008. www.ramsar.org/pdf/res/key_res_x_24_e.pdf Accessed 18 February 2012

  • Saenger P (2002) Mangrove ecology, silviculture and conservation. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Saenger P, Snedaker S (1993) Pantropical trends in mangrove above-ground biomass and litterfall. Oecologia 96:293–299

    Article  Google Scholar 

  • Satyanarayana B, Raman AV, Dehairs F, Kalavati C, Chandramohan P (2002) Mangrove floristic zonation patterns of Coringa, Kakinada Bay, East Coast of India. Wetlands Ecology and Management 10:25–39

    Article  Google Scholar 

  • Seixas CE (2011) First record of the presence of mangrove borer Sphaeroma peruvianum Richardson (Isopoda: Sphaeromatidae) in the Gulf of Montijo, Panama. Tecnociencia 13:31–35

    Google Scholar 

  • Sharpe JM (2010) Responses of the mangrove fern Acrostichum danaeifolium Langsd. & Fisch. (Pteridaceae, Pteridophyta) to disturbances resulting from increased soil salinity and Hurricane Georges at the Jobos Bay National Estuarine Research Reserve, Puerto Rico. Wetlands Ecology and Management 18:57–68

    Article  Google Scholar 

  • Sherman RE, Fahey TJ, Battles JJ (2000) Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest. Journal of Ecology 88:165–178

    Article  Google Scholar 

  • Sherman RE, Fahey TJ, Martinez P (2003) Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6:384–398

    Article  Google Scholar 

  • Smith TJ III (1987) Effects of light and intertidal position on seedling survival and growth in tropical tidal forests. Journal of Experimental Marine Biology and Ecology 110:133–146

    Article  Google Scholar 

  • Smith TJ III (1992) Forest structure. In: Robertson AI, Alongi DM (eds) Coastal and estuarine studies. Tropical mangrove ecosystems. American Geophysical Union, Washington, D.C., pp 101–136

    Chapter  Google Scholar 

  • Soares MLG, Schaeffer-Novelli Y (2005) Above-ground biomass of mangrove species. I. Analysis of models. Estuarine, Coastal and Shelf Science 65:1–18

    Article  Google Scholar 

  • Southwell CR, Bultman JD (1971) Marine borer resistance of untreated woods over long periods of immersion in tropical waters. Biotropica 3:81–107

    Article  Google Scholar 

  • Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan Ltd, London

    Google Scholar 

  • Svavarsson J, Osore MKW, Olafsson E (2002) Does the wood-borer Sphaeroma terebrans (Crustacea) shape the distribution of the mangrove Rhizophora mucronata? Ambio 31:574–579

    PubMed  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge

    Google Scholar 

  • Walters BB (2005) Ecologcial effects of small-sclae cutting of Philippine mangrove forest. Forest Ecology and Management 206:331–348

    Article  Google Scholar 

  • Windevoxhel-Lora N, Imbach A (1999) Uso sostenible de manglares en América Central. In: Ammour TH, Imbach-Hermida AC, Suman DO, Windevoxhel-Lora N (eds) Manejo productivo de manglares en América Central. CATIE Proyecto Conservación para el Desarrollo Sostenible en América Central, Turrialba, pp 329–348

    Google Scholar 

  • Winograd M (1983) Observationes sobre el hallazgo de Pelliciera rhizophorae (Theaceae) en el Caribe Colombiano. Biotropica 15:297–298

    Article  Google Scholar 

  • Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum. Dryad Digital Repository. doi:10.5061/dryad.234, Accessed 9 November 2009

    Google Scholar 

Download references

Acknowledgments

This work would not have been possible without the assistance of Rosa Montañez from CREHO (Centro Regional Ramsar para la Capacitación y la Investigación en Humedales para el Hemisferio Occidental), and staff from ANAM (Autoridad Nacional del Ambiente) and ARAP (Autoridad Nacional de los Recursos Acuáticos de Panamá). We also thank Prof Carlos Seixas and his research group (Universidad de Panamá, Centro Regional de Veraguas). Special thanks to our field assistants Angela Medina Kaeslin, Alvaro Espinosa and Samuel Mojica. We also thank two anonymous referees who provided helpful comments on an earlier version of the manuscript. JG was supported by a scholarship from the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luitgard Schwendenmann.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 457 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, J., Flores, E.E. & Schwendenmann, L. Stand Structure and Aboveground Biomass of a Pelliciera rhizophorae Mangrove Forest, Gulf of Monitjo Ramsar Site, Pacific Coast, Panama. Wetlands 34, 55–65 (2014). https://doi.org/10.1007/s13157-013-0482-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-013-0482-1

Keywords

Navigation