Skip to main content

Advertisement

Log in

Wetland Conservation in the Gulf of Mexico: The Example of the Salt Marsh Morning Glory, Ipomoea sagittata

  • Original Research
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Global climate change will have major effects on wetlands, ecosystems with elevated biodiversity and of enormous economic importance. Using ecological niche modeling and genetic data from three plastid DNA markers sequenced from 96 plants, we studied the salt marsh morning glory, Ipomoea sagittata, to understand the impact that future global warming and increasing sea level may have on aquatic plant conservation, distribution and genetic connectivity on the Gulf of Mexico. Data suggest that genetic variation is low and lacks structure; probable causes include high gene flow, clonal reproduction or use of ineffective molecular markers. Global warming models for its potential distribution in the year 2080 predict a loss of suitable habitat in its northern inland distribution (Cuatro Ciénegas Basin), while its coastal and southern habitats increase. Genetic connectivity decreases along the coast owing to a rise in sea level (Yucatán, Laguna Madre Basin, Usumacinta Basin). Three zones are identified, each requiring a different conservation strategy: 1) A saltwater intrusion zone where most protected areas are; 2) A stability zone which may offer optimal conditions for the creation of protected areas; 3) A zone of range expansion that may cause ecological instability, reducing species richness and promoting colonization by opportunistic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alagador D, Cerdeira JO, Araújo MB (2014) Shifting protected areas: scheduling spatial priorities under climate change. Journal of Applied Ecology 51:703–713. doi:10.1111/1365-2664.12230

    Article  Google Scholar 

  • Anderegg WRL, Prall JW, Harold J, Schneider SH (2010) Expert credibility in climate change. Proceedings of the National Academy of Sciences of the United States of America 107:12107–12109. doi:10.1073/pnas.1003187107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arafeh R, Kadereit JW (2006) Long-distance seed dispersal, clone longevity and lack of phylogeographical structure in the European distributional range of the coastal Calystegia soldanella (L.) R. Br. (Convolvulaceae). Journal of Biogeography 33:1461–1469. doi:10.1111/j.1365-2699.2006.01512.x

    Article  Google Scholar 

  • Araújo M (2009) Climate change and spatial conservation planning. Spatial Conservation Prioritization: quantitative methods and computational tools. In: Moilanen A, Wilson KA, Possingham HP (eds) Spatial conservation prioritization: quantitative methods and computational tools. Oxford University Press, Oxford, pp 172–184

    Google Scholar 

  • Araújo MB, Cabeza M, Thuiller W et al (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology 10:1618–1626. doi:10.1111/j.1365-2486.2004.00828.x

    Article  Google Scholar 

  • Arrigo N, Buerki S, Sarr A et al (2011) Phylogenetics and phylogeography of the monocot genus Baldellia (Alismataceae): Mediterranean refugia, suture zones and implications for conservation. Molecular Phylogenetics and Evolution 58:33–42. doi:10.1016/j.ympev.2010.11.009

    Article  PubMed  Google Scholar 

  • Austin DF (2014) Salt marsh morning-glory (Ipomoea sagittata, Convolvulaceae) — An amphi-Atlantic species. Economic Botany 68:203–219

    Article  Google Scholar 

  • Austin DF, Huáman Z (1996) A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45:3–38

    Article  Google Scholar 

  • Austin DF, Kitajima K, Yoneda Y, Qian L (2001) A putative tropical American plant, Ipomoea nil (Convolvulaceae), in pre-Columbian Japanese art. Economic Botany 55:515–527. doi:10.1007/BF02871714

    Article  Google Scholar 

  • Avise J (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Baldwin AH, Mendelssohn IA (1998) Response of two oligohaline marsh communities to lethal and nonlethal disturbance. Oecologia 116:543–555

    Article  Google Scholar 

  • Bálint M, Málnás K, Nowak C et al (2012) Species history masks the effects of human-induced range loss–unexpected genetic diversity in the endangered giant mayfly Palingenia longicauda. PLoS One 7, e31872. doi:10.1371/journal.pone.0031872

    Article  PubMed Central  PubMed  Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P et al (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15:365–377. doi:10.1111/j.1461-0248.2011.01736.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Bezaury-Creel JE (2005) Protected areas and coastal and ocean management in Mexico. Ocean and Coastal Management 48:1016–1046. doi:10.1016/j.ocecoaman.2005.03.004

    Article  Google Scholar 

  • Bezaury-Creel J, Gutiérrez-Carbonell D (2009) Areas naturales protegidas y desarrollo social en México. Capital natural de México 2:385–431

    Google Scholar 

  • Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution 5:694–700. doi:10.1111/2041-210X.12200

    Article  Google Scholar 

  • Campitelli BE, Stinchcombe JR (2014) Population dynamics and evolutionary history of the weedy vine Ipomoea hederacea in North America. G3: Genes, Genomes, Genetics 8:1407–1416

    Article  Google Scholar 

  • Cennamo P, Del Guacchio E, Paino L (2013) Genetic structure of Ipomoea imperati (Convolvulaceae) in the Mediterranean region and implications for its conservation. Phytotaxa 87:69–74. doi:10.1016/j.aquabot.2007.03.006

    Google Scholar 

  • Contreras-Balderas S (1984) Environmental impacts in Cuatro Cienegas, Coahuila, Mexico: a commentary. Journal of the Arizona-Nevada Academy of Science 19:85–88

    Google Scholar 

  • Cota-Sánchez JH, Remarchuk K, Ubayasena K (2006) Ready-to-use DNa extracted with a CTAB method adapted for herbarium specimens and mucilaginous plant tissue. Plant Molecular Biology Reporter 24:161–167

    Article  Google Scholar 

  • Craft C, Clough J, Ehman J et al (2009) Forecasting the effects of accelerated sea-level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment 7:73–78. doi:10.1890/070219

    Article  Google Scholar 

  • De Meester L, Gómez A, Okamura B, Schwenk K (2002) The Monopolization hypothesis and the dispersal–gene flow paradox in aquatic organisms. Acta Oecologica 23:121–135. doi:10.1016/S1146-609X(02)01145-1

    Article  Google Scholar 

  • Dorken ME, Barrett SCH (2004) Chloroplast haplotype variation among monoecious and dioecious populations of Sagittaria latifolia (Alismataceae) in eastern North America. Molecular Ecology 13:2699–2707. doi:10.1111/j.1365-294X.2004.02246.x

    Article  CAS  PubMed  Google Scholar 

  • Edwards JL (2000) Interoperability of biodiversity databases: biodiversity information on every desktop. Science 289(80):2312–2314. doi:10.1126/science.289.5488.2312

    Article  CAS  PubMed  Google Scholar 

  • Eken G, Bennun L, Brooks TM et al (2004) Key biodiversity areas as site conservation targets. Bioscience 54:1110. doi:10.1641/0006-3568(2004)054[1110:KBAASC]2.0.CO;2

    Article  Google Scholar 

  • Elorza MS, Vesperinas ES, Sánchez ED (2004) Atlas de las plantas alóctonas invasoras en España. biodiversia.es 193

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feagin RA, Martinez ML, Mendoza-González G, Costanza R (2010) Salt marsh zonal migration and ecosystem service change in response to global sea level rise: a case study from an urban region. Ecology and Society 15: [online] URL: http://www.ecologyandsociety.org/vol15/iss4/art14/

  • Fitzpatrick MC, Gove AD, Sanders NJ, Dunn RR (2008) Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Global Change Biology 14:1337–1352. doi:10.1111/j.1365-2486.2008.01559.x

    Article  Google Scholar 

  • Flynn K, McKee K, Mendelssohn I (1995) Recovery of freshwater marsh vegetation after a saltwater intrusion event. Oecologia 103:63–72

    Article  Google Scholar 

  • Gaffin, SR, Rosenzweig, C, Xiang X, G Yetman (2001) Downscaling and geo-spatial fridding of socioeconomic projections from the IPCC special report on emissions scenarios 8SRES). Glo Environ Chang 14:105–123

  • Gallien L, Münkemüller T, Albert CH et al (2010) Predicting potential distributions of invasive species: where to go from here? Diversity and Distributions 16:331–342. doi:10.1111/j.1472-4642.2010.00652.x

    Article  Google Scholar 

  • Gene Codes (2000) Sequencher: Version 4.1. 2. Gene Codes Corporation. Ann Arbor

  • Gilman EL, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany 89:237–250. doi:10.1016/j.aquabot.2007.12.009

    Article  Google Scholar 

  • Glick P, Clough J, Polaczyk A (2013) Potential effects of sea-level rise on coastal wetlands in southeastern Louisiana. Journal of Coastal Research 211–233. doi: 10.2112/SI63-0017.1

  • Gomes LF, Chandler JM, Vaughan CE, et al. (2012) Aspects of germination, emergence, and seed production of three Ipomoea Taxa. 26:245–248.

  • Greaver TL, Sternberg LSL (2010) Decreased precipitation exacerbates the effects of sea level on coastal dune ecosystems in open ocean islands. Global Change Biology 16:1860–1869

    Article  Google Scholar 

  • Guntenspergen AGR, Cahoon DR, Grace J, et al. (1995) Disturbance and recovery of the Louisiana coastal marsh landscape from the impacts of hurricane. Andrew Source: Journal of Coastal Research, Special Issue 21 . Impacts of Hurricane Andrew on the Coastal Zones of Florida and Louisiana: 22–26

  • Haase R (1999) Seasonal growth of “algodão-bravo” (Ipomoea carnea spp. fistulosa). Pesquisa Agropecuaria Brasileira 34(2):159–163

    Article  Google Scholar 

  • Habel JC, Rödder D, Schmitt T, Nève G (2011) Global warming will affect the genetic diversity and uniqueness of Lycaena helle populations. Global Change Biology 17:194–205. doi:10.1111/j.1365-2486.2010.02233.x

    Article  Google Scholar 

  • Hannah L, Midgley GF, Lovejoy T et al (2002) Conservation of biodiversity in a changing climate. Conservation Biology 16:264–268. doi:10.1046/j.1523-1739.2002.00465.x

    Article  Google Scholar 

  • Hannah L, Midgley G, Andelman S et al (2007) Protected area needs in a changing climate. Frontiers in Ecology and the Environment 5:131–138. doi:10.1890/1540-9295(2007)5[131:PANIAC]2.0.CO;2

    Article  Google Scholar 

  • Harrison S, Hastings A (1996) Genetic and evolutionary consequences of metapopulation structure. Trends Ecol Evol II:2–5.

  • Hijmans RJ, Cameron S, Parra J, et al. (2008) WorldClim. Univ. California, Berkeley

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528. doi:10.1126/science.1189930

    Article  CAS  PubMed  Google Scholar 

  • Houlahan JE, Findlay CS (2004) Effect of invasive plant species on temperate wetland plant diversity. Conservation Biology 18:1132–1138. doi:10.1111/j.1523-1739.2004.00391.x

    Article  Google Scholar 

  • INEGI (2005) Humedales potenciales. Escala 1:250000. http://www.inegi.org.mx/geo/contenidos/recnat/humedales/datosvec.aspx. Accessed 2 Feb 2013

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Climate Change 2007: The Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, In: S. Solomon et al. (Eds.), New York: Cambridge University Press

  • Klanderud K, Totland Ø (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86:2047–2054. doi:10.1890/04-1563

    Article  Google Scholar 

  • Koga K, Kadono Y, Setoguchi H (2008) Phylogeography of Japanese water crowfoot based on chloroplast DNA haplotypes. Aquatic Botany 89:1–8. doi:10.1016/j.aquabot.2007.12.012

    Article  CAS  Google Scholar 

  • Lacoul P, Freedman B (2006) Environmental influences on aquatic plants in freshwater ecosystems. Environ Rev 136:89–136. doi: 10.1139/A06-001

  • Landgrave R, Moreno-Casasola P (2012) Evaluación cuantitativa de la pérdida de humedales en México. Investigación Ambiental 4:19–35

    Google Scholar 

  • Li X, Rowley RJ, Kostelnick JC et al (2009) GIS analysis of global impacts from sea level rise. Photogrammetric Engineering and Remote Sensing 75:807–818. doi:10.14358/PERS.75.7.807

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • López-Rosas H, Moreno-Casasola P, Mendelssohn IA (2006) Effects of experimental disturbances on a tropical freshwater marsh invaded by the African grass Echinochloa pyramidalis. Wetlands 26:593–604. doi:10.1672/0277-5212(2006)26[593:EOEDOA]2.0.CO;2

    Article  Google Scholar 

  • Lot A, Novelo A, Olvera M, Ramírez-García P (1999) Catálogo de angiospermas acuáticas de México. Hidrófitas estrictas emergentes, sumergidas y Flot Cuad 33:89–91

    Google Scholar 

  • Martínez-Meyer E (2005) Climate change and biodiversity: some considerations in forecasting shifts in species’ potential distributions. Biodiversity Informatics 2:42–55

    Article  Google Scholar 

  • Mcdonald A (1991) Origin and diversity of Mexican Convolvulaceae. Anales del Instituto de Biología 62:65–82

    Google Scholar 

  • McDonald A (1993) Flora de Veracruz no. 73: Convolvulaceae I.

  • Medagli P, Bianco P, D’emerico P, et al. (1992) New reports and distribution in Italy of Ipomoea sagittata Poiret (Fam. Convolvulaceae). 17–19.

  • Mendoza-González G, Martínez ML, Rojas-Soto OR, et al. (2013) Ecological niche modeling of coastal dune plants and future potential distribution in response to climate change and sea level rise. Global Change Biology 1–12. doi: 10.1111/gcb.12236

  • Miller RRE, Rausher MMD, Manos PPS (1999) Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and waxy sequences. Systematic Botany 24:209–227

    Article  Google Scholar 

  • Minteer B, Collins J (2010) Move it or lose it? The ecological ethics of relocating species under climate change. Ecological Applications 20:1801–1804

    Article  PubMed  Google Scholar 

  • Miryeganeh M, Takayama K, Tateishi Y, Kajita T (2014) Long-distance dispersal by sea-drifted seeds has maintained the global distribution of Ipomoea pes-caprae subsp. brasiliensis (Convolvulaceae). PLoS One 9, e91836. doi:10.1371/journal.pone.0091836

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreno-Casasola P (2008) Los humedales en México: tendencias y oportunidades. Cuadernos de biodiversidad 10–18

  • Mulholland PJ, Best GR, Coutant CC, Hornberger GM, Meyer JL, Robinson PJ, Stenberg JR, Turner RE, VeraHerrera F, Wetzel RG (1997) Effects of climate change on freshwater ecosystems of the south-eastern United States and the Gulf coast of Mexico. Hydrological Processes 11:949–970

    Article  Google Scholar 

  • Neel M (2008) Patch connectivity and genetic diversity conservation in the federally endangered and narrowly endemic plant species Astragalus albens (Fabaceae). Biological Conservation 141:938–955. doi:10.1016/j.biocon.2007.12.031

    Article  Google Scholar 

  • Nicholls RJ, Tol RSJ (2006) Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences 364:1073–1095. doi:10.1098/rsta.2006.1754

    Article  PubMed  Google Scholar 

  • Nicholls R, Hoozemans F, Marchand M (1999) Increasing flood risk and wetland losses due to global sea-level rise: regional and global analyses. Global Environmental Change 9:S69–S87

    Article  Google Scholar 

  • Nicholls RJ, Marinova N, Lowe JA et al (2011) Sea-level rise and its possible impacts given a “beyond 4 °C world” in the twenty-first century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences 369:161–181. doi:10.1098/rsta.2010.0291

    Article  PubMed  Google Scholar 

  • Novelo-Retana A (2006) Plantas acuáticas de la Reserva de Biosfera Pantanos de Centla. Espac. Nat. y Desarro. Sustentable AC México DF, México

  • Oreskes N (2004) The scientific consensus on climate change. Science 306:1686. doi:10.1126/science.1103618

    Article  CAS  PubMed  Google Scholar 

  • Ortega.Ramirez JR, Valiente-Banuet A, Urrutia-Fucugauchi J et al (1998) Paleoclimatic changes durign the Late Pleistocene-Holocene in Laguna Babicora, near the Chihuahuan Desert, Mexico. Canadian Journal of Earth Sciences 35:1168–1179

    Article  Google Scholar 

  • Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Molecular Ecology 22:925–946. doi:10.1111/mec.12152

    Article  PubMed  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O et al (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348. doi:10.1126/science.1215933

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop) 31:161–175

    Article  Google Scholar 

  • Pinkava DJ (1984) Vegetation and Flora of the Bolson of Cuatro Cienegas Region, Coahuila, Mexico: IV. Summary, Endemism and Corrected Catalogue. Journal of the Arizona-Nevada Academy of Science 19

  • Quantum GIS Development Team (2012) Quantum GIS Geographic Information System. http://qgis.osgeo.org/en/site/

  • Rabalais N (2002) Nitrogen in aquatic ecosystems. AMBIO A Journal of Human Environment 31:102–112

    Article  Google Scholar 

  • Rahel FJ, Bierwagen B, Taniguchi Y (2008) Managing aquatic species of conservation concern in the face of climate change and invasive species. Conservation Biology 22:551–561. doi:10.1111/j.1523-1739.2008.00953.x

    Article  PubMed  Google Scholar 

  • Rambaut A (2002) SE-AL v. 2.0a11: sequence alignment program.

  • Rhazi L, Grillas P (2010) Status and distribution of aquatic plants. In: García N, Cuttelod A, Abdul Malak D (eds) Status Distrib. Freshw. Biodivers. North. Africa. IUCN, Gland, Switzerland, Cambridge, UK, and Malaga, Spain, p 141

  • Ridley HN (1930) The dispersal of plants throughout the world. Kent, L. Reeve & Company, Limited

  • Rodrigues ASL, Akçakaya HR, Andelman SJ et al (2004) Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54:1092. doi:10.1641/0006-3568(2004)054[1092:GGAPRF]2.0.CO;2

    Article  Google Scholar 

  • Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23:137–154. doi:10.1016/S1146-609X(02)01146-3

    Article  Google Scholar 

  • Sax DF, Early R, Bellemare J (2013) Niche syndromes, species extinction risks, and management under climate change. Trends in Ecology & Evolution 28:517–523. doi:10.1016/j.tree.2013.05.010

    Article  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM et al (1998) Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7:465–474. doi:10.1046/j.1365-294x.1998.00318.x

    Article  Google Scholar 

  • Schrag AM, Bunn AG, Graumlich LJ (2008) Influence of bioclimatic variables on tree-line conifer distribution in the greater Yellowstone ecosystem: implications for species of conservation concern. Journal of Biogeography 35:698–710. doi:10.1111/j.1365-2699.2007.01815.x

    Article  Google Scholar 

  • Sgrò CM, Lowe AJ, Hoffmann A (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary Applications 4:326–337. doi:10.1111/j.1752-4571.2010.00157.x

    Article  PubMed Central  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Beck JT et al (2005) The tortoise and the hare II: relative utility of 21 noncodig chloroplast DNA sequences for phylogenetic analysis. American Journal of Botany 92:142–168

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE et al (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94:275–288

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Shafer HL, Leonard OR et al (2014) Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: the tortoise and the hare IV. American Journal of Botany 101:1987–2004. doi:10.3732/ajb.1400398

    Article  PubMed  Google Scholar 

  • Shoo LP, Hoffmann AA, Garnett S et al (2013) Making decisions to conserve species under climate change. Climatic Change 119:239–246. doi:10.1007/s10584-013-0699-2

    Article  Google Scholar 

  • Siemens AH, Moreno-Casasola P, Sarabia Bueno C (2006) The metabolization of dunes and wetlands by the city of Veracruz, Mexico. Journal of Latin American Geography 5:7–29. doi:10.1353/lag.2006.0010

    Article  Google Scholar 

  • Slocum MG, Mendelssohn IA (2008) Effects of three stressors on vegetation in an oligohaline marsh. Freshwater Biology 53:1783–1796. doi:10.1111/j.1365-2427.2008.02002.x

    Article  Google Scholar 

  • Sork VL, Davis FW, Westfall R et al (2010) Gene movement and genetic association with regional climate gradients in California valley oak (Quercus lobata Née) in the face of climate change. Molecular Ecology 19:3806–3823. doi:10.1111/j.1365-294X.2010.04726.x

    Article  PubMed  Google Scholar 

  • Souza V, Espinosa-Asuar L, Escalante AE et al (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proceedings of the National Academy of Sciences of the United States of America 103:6565–6570. doi:10.1073/pnas.0601434103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Temunović M, Frascaria-Lacoste N, Franjić J et al (2013) Identifying refugia from climate change using coupled ecological and genetic data in a transitional Mediterranean-temperate tree species. Molecular Ecology 22:2128–2142. doi:10.1111/mec.12252

    Article  PubMed  Google Scholar 

  • Thuiller W, Albert C, Araújo MB et al (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9:137–152. doi:10.1016/j.ppees.2007.09.004

    Article  Google Scholar 

  • Valle M, Chust G, del Campo A et al (2014) Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biological Conservation 170:74–85. doi:10.1016/j.biocon.2013.12.017

    Article  Google Scholar 

  • Vander Zanden MJ, Olden JD (2008) A management framework for preventing the secondary spread of aquatic invasive species. Canadian Journal of Fisheries and Aquatic Sciences 65:1512–1522. doi:10.1139/F08-099

    Article  Google Scholar 

  • Vázquez-González C, Fermán-Almada JL, Moreno-Casasola P, Espejel I (2014) Ocean and coastal management scenarios of vulnerability in coastal municipalities of tropical Mexico: an analysis of wetland land use. Ocean and Coastal Management 89:11–19. doi:10.1016/j.ocecoaman.2013.12.004

    Article  Google Scholar 

  • Velo-Antón G, Parra JL, Parra-Olea G, Zamudio KR (2013) Tracking climate change in a dispersal-limited species: reduced spatial and genetic connectivity in a montane salamander. Molecular Ecology 22:3261–3278. doi:10.1111/mec.12310

    Article  PubMed  Google Scholar 

  • Vermeer M, Rahmstorf S (2009) Global sea level linked to global temperature. Proceedings of the National Academy of Sciences of the United States of America 106:21527–21532. doi:10.1073/pnas.0907765106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volkova PA, Trávníček P, Brochmann C (2010) Evolutionary dynamics across discontinuous freshwater systems: rapid expansions and repeated allopolyploid origins in the Palearctic white water-lilies (Nymphaea). Taxon 59:483–494

    Google Scholar 

Download references

Acknowledgments

We thank Andrew P. Vovides, Antonio Hernández, Carla Gutiérrez and Dulce Infante whose reviews significantly improved this manuscript. We are grateful to Diego Angulo, Ruth Delgado-Dávila, Eduardo Ruíz-Sánchez, Andrés Ortíz-Rodríguez and Ismael Valdivieso for assistance in the field. We also thank Arith Pérez and Cristina Bárcenas for their help in the laboratory and Anna Armitage for providing samples. Laboratory and fieldwork were supported by a grant from CONACyT (106451) to P.M.C. and G.H.R. gratefully acknowledges a graduate studies scholarship from CONACyT (322444). With this study G.H.R. has fulfilled his Master of Science degree requirements at the Instituto de Ecología, A. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Sosa.

Appendix 1

Appendix 1

G. Huerta-Ramos 67, Poza Azul, Coahuila (XAL), G. Huerta-Ramos 68, Rio verde, San Luis Potosí (XAL), G. Huerta-Ramos 69, Muyil, Quintana Roo, (XAL), G. Huerta-Ramos 72, Frontera, Tabasco, (XAL), G. Huerta-Ramos 73, San Francisco Kobén, Campeche (XAL), G. Huerta-Ramos 74, Candelaria, Campeche, Paul C. Keen S/N, Port Arthur, Texas (TAES).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huerta-Ramos, G., Moreno-Casasola, P. & Sosa, V. Wetland Conservation in the Gulf of Mexico: The Example of the Salt Marsh Morning Glory, Ipomoea sagittata . Wetlands 35, 709–721 (2015). https://doi.org/10.1007/s13157-015-0662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0662-2

Keywords

Navigation