Skip to main content
Log in

Geometric numerical integrators for Hunter–Saxton-like equations

  • Original Paper
  • Area 2
  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We present novel geometric numerical integrators for Hunter–Saxton-like equations by means of new multi-symplectic formulations and known Hamiltonian structures of the problems. We consider the Hunter–Saxton equation, the modified Hunter–Saxton equation, and the two-component Hunter–Saxton equation. Multi-symplectic discretisations based on these new formulations of the problems are exemplified by means of the explicit Euler box scheme, and Hamiltonian-preserving discretisations are exemplified by means of the discrete variational derivative method. We explain and justify the correct treatment of boundary conditions in a unified manner. This is necessary for a proper numerical implementation of these equations and was never explicitly clarified in the literature before, to the best of our knowledge. Finally, numerical experiments demonstrate the favourable behaviour of the proposed numerical integrators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bressan, A., Constantin, A.: Global solutions of the Hunter–Saxton equation. SIAM J. Math. Anal. 37(3), 996–1026 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bridges, T.J.: Multi-symplectic structures and wave propagation. Math. Proc. Camb. Philos. Soc. 121(1), 147–190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bridges, T.J., Reich, S.: Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Phys. Lett. A 284(4–5), 184–193 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Celledoni, E., Grimm, V., McLachlan, R.I., McLaren, D.I., O’Neale, D., Owren, B., Quispel, G.R.W.: Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method. J. Comput. Phys. 231, 6770–6789 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, D., Matsuo, T., Raynaud, X.: A multi-symplectic numerical integrator for the two-component Camassa–Holm equation. J. Nonlinear Math. Phys. 21(3), 442–453 (2014)

    Article  MathSciNet  Google Scholar 

  6. Cohen, D., Owren, B., Raynaud, X.: Multi-symplectic integration of the Camassa–Holm equation. J. Comput. Phys. 227(11), 5492–5512 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Furihata, D.: Finite difference schemes for \(\frac{\partial u}{\partial t} = \left( \frac{\partial }{\partial x} \right) ^{\alpha } \frac{\delta {G}}{\delta u}\) that inherit energy conservation or dissipation property. J. Comput. Phys. 156, 181–205 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Furihata, D., Matsuo, T.: Discrete Variational Derivative Method: A Structure-Preserving Numerical Method for Partial Differential Equations. Chapman & Hall/CRC, Boca Raton (2011)

    MATH  Google Scholar 

  9. Gonzalez, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449–467 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Groetsch, C.W.: Spectral methods for linear inverse problems with unbounded operators. J. Approx. Theory 70, 16–28 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Groetsch, C.W.: Inclusions and identities for the moore-penrose inverse of a closed linear operator. Math. Nachr. 171, 157–164 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holden, H., Karlsen, K.H., Risebro, N.H.: Convergent difference schemes for the Hunter–Saxton equation. Math. Comp. 76(258), 699–744 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Holm, D.D., Ivanov, R.I.: Smooth and peaked solitons of the CH equation. J. Phys. A 43(43), 434003 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hunter, J.K., Saxton, R.: Dynamics of director fields. SIAM J. Appl. Math. 51(6), 1498–1521 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hunter, J.K., Zheng, Y.X.: On a completely integrable nonlinear hyperbolic variational equation. Phys. D 79(2–4), 361–386 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hunter, J.K., Zheng, Y.X.: On a nonlinear hyperbolic variational equation. I. Global existence of weak solutions. Arch. Rational Mech. Anal. 129(4), 305–353 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hunter, J.K., Zheng, Y.X.: On a nonlinear hyperbolic variational equation. II. The zero-viscosity and dispersion limits. Arch. Rational Mech. Anal. 129(4), 355–383 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kohlmann, M.: The curvature of semidirect product groups associated with two-component Hunter-Saxton systems. J. Phys. A 44(22), 225203 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lenells, J.: The Hunter–Saxton equation: a geometric approach. SIAM J. Math. Anal. 40(1), 266–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lenells, J.: Poisson structure of a modified Hunter-Saxton equation. J. Phys. A 41(28), 285207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lenells, J.: Periodic solitons of an equation for short capillary-gravity waves. J. Math. Anal. Appl. 352(2), 964–966 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lenells, J.: Spheres, Kähler geometry and the Hunter–Saxton system. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469(2154), 20120726 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lenells, J., Lechtenfeld, O.: On the \(N=2\) supersymmetric Camassa–Holm and Hunter–Saxton equations. J. Math. Phys. 50(1), 012704 (2009)

    Article  MathSciNet  Google Scholar 

  24. Lenells, J., Wunsch, M.: The Hunter-Saxton system and the geodesics on a pseudosphere. Comm. Partial Differ. Equ. 38(5), 860–881 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Marsden, J.E., Patrick, G.W., Shkoller, S.: Multisymplectic geometry, variational integrators, and nonlinear PDEs. Comm. Math. Phys. 199(2), 351–395 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moon, B., Liu, Y.: Wave breaking and global existence for the generalized periodic two-component Hunter–Saxton system. J. Differ. Equ. 253(1), 319–355 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moore, B., Reich, S.: Backward error analysis for multi-symplectic integration methods. Numer. Math. 95(4), 625–652 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pavlov, M.V.: The Gurevich–Zybin system. J. Phys. A 38(17), 3823–3840 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Quispel, G.R.W., McLaren, D.I.: A new class of energy-preserving numerical integration methods. J. Phys. A 41, 045206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Raynaud, X.: On a shallow water wave equation. Ph.D. thesis, NTNU Trondheim (2006)

  31. Wu, H., Wunsch, M.: Global existence for the generalized two-component Hunter–Saxton system. J. Math. Fluid Mech. 14(3), 455–469 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wunsch, M.: On the Hunter–Saxton system. Discrete Contin. Dyn. Syst. Ser. B 12(3), 647–656 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wunsch, M.: The generalized Hunter–Saxton system. SIAM J. Math. Anal. 42(3), 1286–1304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Hunter-Saxton equation and its zero-viscosity and zero-dispersion limits. SIAM J. Sci. Comput., 31(2):1249–1268, (2008/09)

  35. Xu, Y., Shu, C.-W.: Dissipative numerical methods for the Hunter–Saxton equation. J. Comput. Math. 28(5), 606–620 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Yin, Z.: On the structure of solutions to the periodic Hunter–Saxton equation. SIAM J. Math. Anal. 36, 272–283 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, P., Zheng, Y.: Existence and uniqueness of solutions of an asymptotic equation arising from a variational wave equation with general data. Arch. Ration. Mech. Anal. 155(1), 49–83 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the refrees’ comments on an earlier version. We would like to thank Marcus Wunsch and Xavier Raynaud for interesting discussions. DC acknowledges support from UMIT Research Lab at Umeå University and the FY2012 Researcher Exchange Program between the Japan Society for the Promotion of Science and the Royal Swedish Academy of Sciences. YM, FD and TM acknowledge supprt from JSPS KAKENHI Grant Numbers 25287030, 15H03635, 16KT0016, 16K17550, 17H02826.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuto Miyatake.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyatake, Y., Cohen, D., Furihata, D. et al. Geometric numerical integrators for Hunter–Saxton-like equations. Japan J. Indust. Appl. Math. 34, 441–472 (2017). https://doi.org/10.1007/s13160-017-0252-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13160-017-0252-1

Keywords

Mathematics Subject Classification

Navigation