Skip to main content

Advertisement

Log in

Technology and potential applications of probiotic encapsulation in fermented milk products

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Fermented milk products containing probiotics and prebiotics can be used in management, prevention and treatment of some important diseases (e.g., intestinal- and immune-associated diseases). Microencapsulation has been used as an efficient method for improving the viability of probiotics in fermented milks and gastrointestinal tract. Microencapsulation of probiotic bacterial cells provides shelter against adverse conditions during processing, storage and gastrointestinal passage. Important challenges in the field include survival of probiotics during microencapsulation, stability of microencapsulated probiotics in fermented milks, sensory quality of fermented milks with microencapsulated probiotics, and efficacy of microencapsulation to deliver probiotics and their controlled or targeted release in the gastrointestinal tract. This study reviews the current knowledge, and the future prospects and challenges of microencapsulation of probiotics used in fermented milk products. In addition, the influence of microencapsulation on probiotics viability and survival is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari K, Gruen IU, Mustapha A, Fernando LN (2002) Changes in the profile of organic acids in plain set and stirred yogurts during manufacture and refrigerated storage. J Food Qual 25:435–451

    CAS  Google Scholar 

  • Adhikari K, Mustapha A, Grun IU, Fernando L (2000) Viability of microencapsulated bifidobacteria in set yogurt during refrigerated storage. J Dairy Sci 83:1946–1951

    CAS  Google Scholar 

  • Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18:240–251

    CAS  Google Scholar 

  • Ananta E, Volkert M, Knorr D (2005) Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int Dairy J 15:399–409

    CAS  Google Scholar 

  • Annan NT, Borza AD, Hansen LT (2008) Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescentis 15703T during exposure to simulated gastro-intestinal conditions. Food Res Int 41:184–193

    CAS  Google Scholar 

  • Beheshtipour H, Mortazavian AM, Mohammadi R, Sohrabvandi S, Khosravi-Darani K (2013) Supplementation of Spirulina platensis and Chlorella vulgaris Algae into Probiotic Fermented Milks. Comprehensive Reviews in Food Science and Food Safety 12:144–154

    CAS  Google Scholar 

  • Boza Y, Barbi D, Scamparini A (2004) Survival of Beijerinckia sp. microencapsulated in carbohydrates by spray-drying. J Microencapsul 21:15–24

    CAS  Google Scholar 

  • CAC/RCP 243: 2003, Codex Standard for Fermented Milks.

  • Capela P, Hay TKC, Shah N (2006) Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res Int 39:203–211

    CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Gibbs P (2004) Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int Dairy J 14:835–847

    CAS  Google Scholar 

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2003) Effect of various factors upon thermotolerance and survival during storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. J Food Sci 68:2538–2541

    CAS  Google Scholar 

  • Cassidy A, Bingham SA, Cummings J (1994) Starch intake and colorrectal cancer risk: an international comparison. Br J Cancer 69:119–125

    Google Scholar 

  • Champagne CP, Møllgaard H (2008) Production of probiotic cultures and their addition in fermented foods. In: Franworth ER (ed) Handbook of Fermented Functional Foods. CRC Press Taylor & Francis Group, United States of America

    Google Scholar 

  • Champagne CP (2012) Microencapsulation of probiotics in food: challenges and future prospects. Ther Deliv 3:1249–1251

    CAS  Google Scholar 

  • Chan ES, Zhang Z (2002) Encapsulation of probiotic bacteria Lactobacillus acidophilus by direct compression. Food and Bioproducts Processing 80:78–82

    CAS  Google Scholar 

  • Chandramouli V, Kailasapathy K, Peiris P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56:27–35

    CAS  Google Scholar 

  • Chen MJ, Chen KN, Kuo YT (2007) Optimal thermotolerance of Bifidobacterium bifidum in gellan–alginate microparticles. Biotechnol Bioeng 98:411–419

    CAS  Google Scholar 

  • Conrad PB, Miller DP, Cielenski PR, Pablo JJ (2000) Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiology 41:124–127

    Google Scholar 

  • Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J Control Release 162:56–67

    CAS  Google Scholar 

  • Corcoran BM, Ross RP, Fitzgerald GF, Dockery P, Stanton C (2006) Enhanced survival of GroESL-overproducing Lactobacillus paracasei NFBC 338 under stressful conditions induced by drying. Appl Environ Microbiol 72:5104–5107

    CAS  Google Scholar 

  • Corcoran BM, Ross RP, Fitzgerald GF, Stanton C (2004) Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J Appl Microbiol 96:1024–1039

    CAS  Google Scholar 

  • Crittenden R, Weerakkody R, Sanguansri L, Augustin MA (2006) Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Appl Environ Microbiol 72:2280–2282

    CAS  Google Scholar 

  • Cui J, Goh J, Kim P, Choi S, Lee B (2000) Survival and stability of Bifidobacteria loaded in alginate poly-L-lysine microparticles. Int J Pharm 210:51–59

    CAS  Google Scholar 

  • Dave RI, Shah N (1997) Viability of yogurt and probiotic bacteria in yoghurts made from commercial starter culture. Int Dairy J 7:31–41

    Google Scholar 

  • De Vuyst L (2000) Technology aspects related to the application of functional starter cultures. Food Technol Biotechnol 38:105–112

    Google Scholar 

  • Desmond C, Ross RP, O′Callaghan E, Fitzgerald G, Stanton C (2002) Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J Appl Microbiol 93:1003–1011

    CAS  Google Scholar 

  • Desmond C, Stanton C, Fitzgerald GF, Collins K, Ross RP (2001) Environmental adaptation of probiotic lactobacilli towards improvement of performance during spray drying. Int Dairy J 11:801–808

    Google Scholar 

  • Dimantov A, Greenberg M, Kesselman E, Shimoni (2003) Study of high amylase corn starch as food grade enteric coating in a microcapsule model systems. Innov. Food Sci Eng Technol 5:93–100

    Google Scholar 

  • Dinakar P, Mistry VV (1994) Growth and viability of Bifidobacterium bifidum in Cheddar cheese. J Dairy Sci 77:2854–2864

    CAS  Google Scholar 

  • Ding WK, Shah N (2009) Effect of various encapsulating materials on the stability of probiotic bacteria. J Food Sci 74:M100–M107

    CAS  Google Scholar 

  • Divya JB, Varsha KK, Nampoothiri KM, Ismail B, Pandey A (2012) Probiotic fermented foods for health benefits. Eng Life Sci 12:377–390

    Google Scholar 

  • Doherty SB, Auty MA, Stanton C, Ross RP, Fitzgerald GF, Brodkorb A (2012) Survival of entrapped Lactobacillus rhamnosus GG inwhey protein micro-beads during simulated ex vivo gastro-intestinal transit. Int Dairy J 22:31–43

    CAS  Google Scholar 

  • Doleyres Y, Lacroix C (2005) Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int Dairy J 15:973–988

    CAS  Google Scholar 

  • Donkor ON, Henriksson A, Vasiljevic T, Shah N (2006) Effect of acidification on the activity of probiotics in yoghurt during cold storage. Int Dairy J 16:1181–1189

    CAS  Google Scholar 

  • Drake M, Small CL, Spence KD, Swanson B (1996) Rapid detection and identification of Lactobacillus spp. in dairy products by using the polymerase chain reaction. J Food Prot 59:1131–1136

    Google Scholar 

  • Duong T, Barrangou R, Russell WM, Klaenhammer TR (2006) Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 72:1218–1225

    CAS  Google Scholar 

  • Englyst HN, Kingman SM, Gummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 2(46):33–50

    Google Scholar 

  • Favaro-Trindale CS, Grosso C (2002) Microencapsulation of L. acidophilus (La-05) and B lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. J Microencapsul 19:485–494

    Google Scholar 

  • Favaro Trindade CS, Grosso CRF (2000) The effect of the immobilization of Lactobacillus acidophilus and Bifidobacterium lactis in alginate on their tolerance to gastro-intestinal secretions. Milchwissenschaft 55:496–499

    Google Scholar 

  • Fowler A, Toner M (2005) Cryo-injury and biopreservation. Ann N Y Acad Sci 1066:119–135

    CAS  Google Scholar 

  • Gardiner G, O′Sullivan E, Kelly J, Auty MAE, Fitzgerald GF, Collins JK, Ross RP (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66:2605–2612

    CAS  Google Scholar 

  • Gardiner G, Ross RP, Collins JKG, Fitzgerald GF, Stanton C (1998) Development of a probiotic Cheddar cheese containing human-derived Lactobacillus paracasei strains. Appl Environ Microbiol 64:2192–2199

    CAS  Google Scholar 

  • Gbassi GK, Vandamme T, Ennahar S, Marchioni E (2009) Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. Int J Food Microbiol 129:103–105

    CAS  Google Scholar 

  • Gerez CL, Font de Valdez G, Gigante ML, Grosso CRF (2012) Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett Appl Microbiol 54:552–556

    CAS  Google Scholar 

  • Gilliland SE (1989) Acidophilus milk products: A review of potential benefits to consumers. J Dairy Sci 72:2483–2494

    CAS  Google Scholar 

  • Godward G, Kailasapathy K (2003) Viability and survival of free, encapsulated and co-encapsulated probiotic bacteria in ice cream. Milchwissenschaft 58:161–164

    CAS  Google Scholar 

  • Groboillot AF, Boadi DK, Poncelet D, Neufeld RJ (1994) Immobilization of cells for application in the food industry. CRC critical reviews in biotechnology 14:75–107

    CAS  Google Scholar 

  • Guerin D, Vuillemard JC, Subirade M (2003) Protection of bifidobacteria encapsulated in polysaccharide-protein gel beads against juice and bile. J Food Prot 66:2076–2084

    CAS  Google Scholar 

  • Hansen LT, Allan-Wojtas PM, Jin YL, Paulson A (2002) Survival of Ca-alginate microencapsulated Bifidobacterium ssp. in milk and simulated gastrointestinal conditions. Food Microbiol 19:35–45

    CAS  Google Scholar 

  • Heidebach T, Forst P, Kulozik U (2009) Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocoll 23:1670–1677

    CAS  Google Scholar 

  • Heidebach T, Först P, Kulozik U (2010) Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J Food Eng 98:309–316

    CAS  Google Scholar 

  • Heidebach T, Först P, Kulozik U (2012) Microencapsulation of Probiotic Cells for Food Applications. Crit Rev Food Sci Nutr 52:291–311

    CAS  Google Scholar 

  • Hisiao H-C, Lian W-C, Chou CC (2004) Effect of packaging conditions and temperature on viability of microencapsulated bifidobacteria during storage. Journal of Food Science and Agriculture 84:134–139

    Google Scholar 

  • Holzapfel WH, Haberer P, Geisen R, Bjorkroth J, Schillinger U (2001) Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr 73:365–373

    Google Scholar 

  • Huq T, Khan A, Khan RA, Riedl B, Lacroix M (2013) Encapsulation of Probiotic Bacteria in Biopolymeric System. Crit Rev Food Sci Nutr 53:909–916

    CAS  Google Scholar 

  • Hyndman CL, Groboillot AF, Poncelet D, Champagne CP, Neufeld R (1993) Microencapsulation of Lactococcus lactis within cross-linked gelatin membranes. J Chem Technol Biotechnol 56:259–263

    CAS  Google Scholar 

  • Iyer C, Kailasapathy K (2005) Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. J Food Sci 70:18–23

    Google Scholar 

  • Jennings TA (1999) Lyophilisation-Introduction and basic principles. CRC press, Boca Raton

    Google Scholar 

  • Jung JK, Kil JH, Kim SK, Jeon JT, Park KY (2007) Survival of Double-Microencapsulated Bifidobacterium breve in Milk in Simulated Gastric and Small Intestinal Conditions. J Food Sci Nutr 12:58–63

    Google Scholar 

  • Kailasapathy K (2006) Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT Food Sci Technol 39:1221–1227

    CAS  Google Scholar 

  • Kalliomaki M, Salminen S, Poussa T, Arvilommi H, Isolauri E (2003) Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 361:1869–1871

    Google Scholar 

  • Kearney N, Meng XC, Stanton C, Kelly J, Fitzgerald GF, Ross R (2009) Development of a spray dried probiotic yoghurt containing Lactobacillus paracasei NFBC 338. Int Dairy J 19:684–689

    CAS  Google Scholar 

  • Kebary K (1996) Viability of Bifidobacterium bifidum and its effect on quality of frozen Zabady. Food Res Int 29:431–437

    Google Scholar 

  • Kebary KMK, Hussein SA, Badawi RM (1998) Improving viability of Bifidobacterium and their effect on frozen ice milk. J Dairy Sci 26:319–337

    Google Scholar 

  • Kim S-J, Cho SY, Kim SH, Song O-J, Shin l-S, Cha DS, Park H (2008) Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121 LWT. LWT Food Sci Technol 41:493–500

    CAS  Google Scholar 

  • Korbekandi H, Jahadi M, Maracy M, Abedi D, Jalali M (2008) Production and evaluation of a probiotic yogurt using Lactobacillus casei ssp. casei. Int J Dairy Technol 62:75–79

    Google Scholar 

  • Korbekandi H, Mortazavian AM, Iravani S (2011) Technology and stability of probiotic in fermented milks containing probiotics and prebiotics In: Probiotic and prebiotic foods: technology, stability and benefits to the human health. Shah, N.P., da Cruz, A.G., Faria, J.A.F. (Eds.), Nova Science Publishers, Inc. USA.

  • Kosin B, Rakshit SK (2006) Microbial and processing criteria for production of probiotics: A review. Food Technol Biotechnol 44:371–379

    Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2004) The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int Dairy J 14:737–743

    CAS  Google Scholar 

  • Krasaekoopt W, Bhandari B, Deeth H (2006) Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT- and conventionally treated milk during storage. LWT Food Sci Technol 39:177–183

    CAS  Google Scholar 

  • Lee JS, Cha DS, Park H (2004) Survival of freezed-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. J Agric Food Chem 52:7300–7305

    CAS  Google Scholar 

  • Lee KY, Heo T (2000) Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salts solution. Appl Environ Microbiol 66:869–873

    CAS  Google Scholar 

  • Lee Y-K, Puong KY, Ouwehand AC, Salminen S (2003) Displacement of bacterial pathogens from mucus and Caco-2 cell surface by Lactobacilli. J Med Microbiol 52:925–930

    Google Scholar 

  • Lee Y-K, Wong SF (1998) Stability of lactic acid bacteria in fermented milk. In: Salminen S, Wright A (eds) Lactic acid bacteria: microbiology and functional aspects. Marcel Dekker, Inc, New York, pp 103–115

    Google Scholar 

  • Leverrier P, Fremont Y, Rouault A, Boyaval P, Jan G (2005) In vitro tolerance to digestive stresses of propionibacteria: Influence of food matrices. Food Microbiol 22:11–18

    CAS  Google Scholar 

  • Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray-drying. Int J Food Microbiol 74:79–86

    Google Scholar 

  • Lian WC, Hsiao HC, Chou CC (2003) Viability of microencapsulated bifidobacteria in simulated gastric juice and bile solution. Int J Food Microbiol 86:293–301

    Google Scholar 

  • Lucas A, Sodini I, Monnet C, Jolivet P, Corrieu G (2004) Probiotic cell counts and acidification in fermented milks supplemented with milk protein hydrolysates. Int Dairy J 14:47–53

    CAS  Google Scholar 

  • Maitrot H, Paquin C, Lacroix C, Champagne CP (1997) Production of concentrated freeze-dried cultures of Bifidobacterium longum in k-carrageenan-locust bean gum gel. Biotechnol Tech 11:527–531

    CAS  Google Scholar 

  • Mandal S, Puniya AK, Singh K (2006) Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int Dairy J 16:1190–1195

    CAS  Google Scholar 

  • Martoni C, Bhathena J, Urbanska AM, Prakash S (2008) Microencapsulated bile salt hydrolase producing Lactobacillus reuteri for oral targeted delivery in the gastrointestinal tract. Appl Microbiol Biotechnol 81:225–233

    CAS  Google Scholar 

  • Mattila-Sandholm T, Myllarinen P, Crittenden RGM, Fonden R, Saarela M (2002) Technological challenges for future probiotic foods. Int Dairy J 12:173–182

    CAS  Google Scholar 

  • McMaster LD, Kokott SA, Slatter P (2005) Micro-encapsulation of Bifidobacterium lactis for incorporation into soft foods World. J Microbiol Biotechnol 21:723–728

    Google Scholar 

  • Meng XC, Stanton C, Fitzgerald GF, Daly C, Ross R (2008) Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem 106:1406–1416

    CAS  Google Scholar 

  • Mohammadi R, Sohrabvandi S, Mortazavian AM (2012) The starter culture characteristics of probiotic microorganisms in fermented milks. Engineering in Life Sciences 12:399–409

    CAS  Google Scholar 

  • Moolman FS, Labuschagne PW, Thantsa MS, Van Der Merwe TL, Rolfes H, Cloete T (2006) Encapsulating probiotics with an interpolymer complex in supercritical carbon dioxide. S Afr J Sci 102:349–354

    CAS  Google Scholar 

  • Morgan CA, Herman N, White PA, Vesey G (2006) Preservation of micro-organisms by drying: A review. J Microbiol Meth 66:183–193

    CAS  Google Scholar 

  • Mortazavian AM, Ehsani MR, Azizi A, Razavi SH, Mousavi SM, Sohrabvandi S (2008) Viability of calcium alginate-microencapsulated probiotic bacteria in Iranian yogurt drink (Doogh) during the refrigerated storage period and under the simulated gastrointestinal conditions. Aust J Dairy Technol 63:24–29

    Google Scholar 

  • Mortazavian AM, Ehsani MR, Mousavi SM, Sohrabvandi S, Reinheimer J (2007a) Effect of refrigerated storage temperature on the viability of probiotic micro-organisms in yoghurt. Int J Dairy Technol 60:123–127

    Google Scholar 

  • Mortazavian AM, Razavi SH, Ehsani MR, Sohrabvandi S (2007b) Principles and methods of microencapsulation of probiotic microorganisms.Iranian. J Biotechnol 5:1–18

    CAS  Google Scholar 

  • Mortazavian AM, Sohrabvandi S (2006) Probiotics and Food Probiotic Products; based on dairy probiotic products. Eta Publication, Tehran

    Google Scholar 

  • Muthukumarasamy P, Allan WP, Holley RA (2006) Stability of Lactobacillus reuteri in different types of microcapsules. J Food Sci 71:M20–M24

    CAS  Google Scholar 

  • Nisperos-Carriedo MO (1994) In: Edible coatings and films to improve food quality. Krochta, J.M., Baldwin, E.A., Nisperos-Carriedo, M. (Eds.), Technomic Publishing Company, Lancaster.

  • O′grady BG, Gibson R (2005) Microbiota of the human gut. In: Tamime A (ed) Probiotic Dairy Products. Blackwell Publishing Ltd, UK

    Google Scholar 

  • O′Riordan K, Andrews D, Buckle K, Conway P (2001) Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. J Appl Microbiol 91:1059–1066

    Google Scholar 

  • Oetjen GW (1999) Freeze-drying. Wiley-VCH, Weinheim

    Google Scholar 

  • Oliveira MN, Sodini I, Remeuf F, Corrieu G (2001) Effect of milk supplementation and culture composition on acidification, textural properties and microbiological stability of fermented milks containing probiotic bacteria. Int Dairy J 11:935–942

    CAS  Google Scholar 

  • Oliveira RPS, Florence ACR, Silva RC, Perego P, Converti A, Gioielli LA, Oliveira M (2009) Effect of different prebiotics on the fermentation kinetics, probiotic survival and fatty acids profiles in nonfat symbiotic fermented milk. Int J Food Microbiol 128:467–472

    CAS  Google Scholar 

  • Østlie MH, Helland MH, Narvhus J (2003) Growth and metabolism of selected strains of probiotic bacteria in milk. Int J Food Microbiol 87:17–27

    Google Scholar 

  • Østlie MH, Treimo J, Narvhus J (2005) Effect of temperature on growth and metabolism of probiotic bacteria in milk. Int Dairy J 15:989–997

    Google Scholar 

  • Palmfeldt J, Hahn-Hägerdal B (2000) Influence of culture pH on survival of Lactobacillus reuteri subjected to freeze-drying. Int J Food Microbiol 55:235–238

    CAS  Google Scholar 

  • Parvez S, Malik KA, Ah Kang S, Kim HY (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100:1171–1185

    CAS  Google Scholar 

  • Patist A, Zoerb H (2005) Preservation mechanisms of trehalose in food and biosystems. Colloids Surf B: Biointerfaces 40:107–113

    CAS  Google Scholar 

  • Peniche C, Argüelles-Monal W, Peniche H, Acosta N (2003) Chitosan: An attractive biocompatible polymer for microencapsulation. Macromol Biosci 3:511–520

    CAS  Google Scholar 

  • Peres CM, Peres C, Hernández-Mendoza A, Malcata FX (2012) Review on fermented plant materials as carriers and sources of potentially probiotic lactic acid bacteria – With an emphasis on table olives. Trends Food Sci Technol 26:31–42

    CAS  Google Scholar 

  • Picot A, Lacroix C (2003a) Effects of micronization on viability and thermotolerance of probiotic freeze-dried cultures. Int Dairy J 13:455–462

    Google Scholar 

  • Picot A, Lacroix C (2003b) Optimization of dynamic loop mixer operating conditions for production of O/W emulsion to be used for cell encapsulation. Lait 83:237–250

    CAS  Google Scholar 

  • Picot A, Lacroix C (2004) Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J 14:505–515

    CAS  Google Scholar 

  • Rao AV, Shivnarain N, Maharaj I (1989) Survival of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices. Can Inst Food Sci Tech J 22:345–349

    Google Scholar 

  • Ravula RR, Shah N (1998) Viability of probiotic bacteria in fermented frozen dairy desserts. Food Aust 50:136–139

    Google Scholar 

  • Rinkinen M, Jalava K, Westermarck E, Salminen S, Ouwehand AC (2003) Interaction between probiotic LAB and canine enteric pathogens: a risk factor for intestinal Enterococcus faecium colonization. Vet Microbiol 92:111–119

    Google Scholar 

  • Rodtong S, Tannock G (1993) Differentiation of Lactobacillus strains by ribotyping. Appl Environ Microbiol 59:3480–3484

    CAS  Google Scholar 

  • Rokka S, Rantamäki P (2010) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol 231:1–12

    CAS  Google Scholar 

  • Saarela M, Rantala M, Hallamaa K, Nohynek L, Virkajärvi I, Mättö J (2004) Stationary-phase acid and heat treatments for improvement of the viability of probiotic lactobacilli and bifidobacteria. J Appl Microbiol 96:1205–1214

    CAS  Google Scholar 

  • Saarela M, Virkaja¨ rvi I, yAlakomi H-L, Sigvart-Mattila P, Mättö J (2006) Stability and functionality of freeze-dried probiotic Bifidobacterium cells during storage in juice and milk. Int Dairy J 16:1477–1482

    CAS  Google Scholar 

  • Sabikhi L, Babu R, Thompkinson DK, Kapila S (2010) Resistance of microencapsulated Lactobacillus acidophilus LA1 to processing treatments and simulated gut conditions. Food Bioprocess Technol 3:586–593

    Google Scholar 

  • Santivarangkna C, Kulozik U, Foerst P (2006) Effect of carbohydrates on the survival of Lactobacillus helveticus during vacuum drying. Lett Appl Microbiol 42:271–276

    CAS  Google Scholar 

  • Schoug A, Olsson J, Carlfors J, Schnu¨rer J, Hakansson S (2006) Freeze-drying of Lactobacillus coryniformis Si3-effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties. Cryobiology 53:119–127

    CAS  Google Scholar 

  • Semyonov D, Ramon O, Kaplun Z, Levin-Brener L, Gurevich N, Shimoni E (2010) Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res Int 43:193–202

    CAS  Google Scholar 

  • Shah N (2000) Probiotic bacteria: selective enumeration and survival in dairy foods. J Dairy Sci 83:894–907

    CAS  Google Scholar 

  • Shah N (2001) Functional foods from probiotics and prebiotics. Food Technol 55:46–53

    CAS  Google Scholar 

  • Shah NP, Lankaputhra WEV (1997) Improving viability of Lactobacillus acidophilus and Bifidobacterium ssp. in yogurt. Int Dairy J 7:349–359

  • Shah NP, Ali JF, Ravula R (2000) Populations of L. acidophilus, Bifidobacterium spp., and Lactobacillus casei in commercial fermented milk products. Biosci Microflora 19:35–39

  • Shah NP, Lankaputhra WEV, Britz ML, Kyle WSA (1995) Survival of Lactobacillus acidophilus and Bifidobacterium bifidum in commercial yoghurt during refrigerated storage. Int Dairy J 5:515–521.

  • Sheehan VM, Sleator RD, Fitzgerald GF, Hill C (2006) Heterologous expression of BetL, a betaine uptake system, enhances the stress tolerance of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72:2170–2177

    CAS  Google Scholar 

  • Sheu TY, Marshall RT (1993) Microentrapment of Lactobacilli in calcium alginate gels. J Food Sci 58:557–561

    Google Scholar 

  • Simpson PJ, Stanton C, Fitzgerald GF, Ross RP (2005) Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J Appl Microbiol 99:493–501

    CAS  Google Scholar 

  • Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    CAS  Google Scholar 

  • Song SH, Cho YH, Jiyong P (2003) Microencapsulation of Lactobacillus casei YIT 9018 using a microporous glass membrane emulsification system. J Food Sci 68:195–200

    CAS  Google Scholar 

  • Su L, Lin C, Chen M (2007) Development of an Oriental-style dairy product coagulated by microcapsules containing probiotics and filtrates from fermented rice. Int J Dairy Technol 60:49–54

    Google Scholar 

  • Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K (2000) Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yogurt. Int J Food Microbiol 62:47–55

    CAS  Google Scholar 

  • Sun W, Griffiths MW (2000) Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. Int J Food Microbiol 61:17–25

    CAS  Google Scholar 

  • Takata I, Tosa T, Chibata I (1977) Screening of matrix suitable for immobilization microbal cells. J Solid-phase Biochem 2:225–236

    CAS  Google Scholar 

  • Talwalkar A, Kailasapathy K (2003) Effect of microencapsulation on oxygen toxicity in probiotic bacteria. Aust J Dairy Technol 58:36–39

    Google Scholar 

  • Tamime A (2006) Fermented milks. Blackwell Science, Ltd

    Google Scholar 

  • Tamime AY, Robinson R (1999) Yoghurt: science and technology, 2nd edn. Woodhead publishing, Cambridge

    Google Scholar 

  • Tamime AY, Saarela M, Korslund Sondergaard A, Mistry VV, Shah N (2005) Production and maintenance of viability probiotics micro-organism in dairy products. In: Tamime A (ed) Probiotic Dairy Products. Blackwell Publishing Ltd, UK, pp 39–72

    Google Scholar 

  • Truelstrup Hansen L, Allan-Wojtas PM, Jin YL, Paulson AT (2002) Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastro-intestinal conditions. Food Microbiol 19:35–45

    Google Scholar 

  • Walker DC, Girgis HS, Klaenhammer TR (1999) The groESL Chaperone Operon of Lactobacillus johnsonii. Appl Environ Microbiol 65:3033–3041

    CAS  Google Scholar 

  • Wenrong S, Griffiths M (2000) Survival of bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. Int J Food Microbiol 61:17–25

    Google Scholar 

  • World Health Organization, Food and Agriculture Organization of the United Nations (WHO/FAO) (2001) Probiotics in food. Health and nutritional properties and guidelines for evaluation. FAO Food and Nutrition Paper 85; Rome 2006. Online accessed on July 3, 2007: ftp://ftp.fao.org/docrep/fao/009/a0512e/a0512e00.pdf.

  • Yáñez-Fernández J, Ramos-Ramírez EG, Salazar-Montoya JA (2008) Rheological characterization of dispersions and emulsions used in the preparation of microcapsules obtained by interfacial polymerization containing Lactobacillus sp. Eur Food Res Technol 226:957–966

    Google Scholar 

Download references

Acknowledgments

This review was supported by Isfahan University of Medical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Iravani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iravani, S., Korbekandi, H. & Mirmohammadi, S.V. Technology and potential applications of probiotic encapsulation in fermented milk products. J Food Sci Technol 52, 4679–4696 (2015). https://doi.org/10.1007/s13197-014-1516-2

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-014-1516-2

Keywords

Navigation