Skip to main content

Advertisement

Log in

Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques

  • Review
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

In recent decades, there is a global advancement in manufacturing industry due to increased applications of nanotechnology. Food industry also has been tremendously changing from passive packaging to innovative packaging, to cope with global trends, technological advancements, and consumer preferences. Active research is taking place in food industry and other scientific fields to develop innovative packages including smart, intelligent and active food packaging for more effective and efficient packaging materials with balanced environmental issues. However, in food industry the features behind smart packaging are narrowly defined to be distinguished from intelligent packaging as in other scientific fields, where smart materials are under critical investigations. This review presents some scientific concepts and features pertaining innovative food packaging. The review opens new research window in innovative food packaging to cover the existing disparities for further precise research and development of food packaging industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14(1):3–15

    Article  CAS  Google Scholar 

  • Alkan D, Yemenicioğlu A (2016) Potential application of natural phenolic antimicrobials and edible film technology against bacterial plant pathogens. Food Hydrocolloids 55:1–10

    Article  CAS  Google Scholar 

  • Amenta V, Aschberger K, Arena M, Bouwmeester H, Botelho Moniz F, Brandhoff P, Gottardo S, Marvin HJP, Mech A, Quiros Pesudo L, Rauscher H, Schoonjans R, Vettori MV, Weigel S, Peters RJ (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regul Toxicol Pharmacol 73(1):463–476

    Article  Google Scholar 

  • Ampatzidis YG, Vougioukas SG, Bochtis DD, Tsatsarelis CA (2008) A yield mapping system for hand-harvested fruits based on RFID and GPS location technologies: field testing. Precision Agric 10(1):63–72

    Article  Google Scholar 

  • Bastarrachea L, Dhawan S, Sablani SS (2011) Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Eng Rev 3(2):79–93

    Article  Google Scholar 

  • Biji KB, Ravishankar CN, Mohan CO, Srinivasa Gopal TK (2015) Smart packaging systems for food applications: a review. J Food Sci Technol 52(10):6125–6135

    Article  CAS  Google Scholar 

  • Blaiszik B, Kramer S, Olugebefola S, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40(1):179–211

    Article  CAS  Google Scholar 

  • Blasco C, Picó Y (2011) Determining nanomaterials in food. TrAC Trends Anal Chem 30(1):84–99

    Article  CAS  Google Scholar 

  • Bleay SM, Loader CB, Hawyes VJ, Humberstone L, Curtis PT (2001) A smart repair system for polymer matrix composites. Compos A Appl Sci Manuf 32(12):1767–1776

    Article  Google Scholar 

  • Brizio APDR, Prentice C (2015) Development of an intelligent enzyme indicator for dynamic monitoring of the shelf-life of food products. Innov Food Sci Emerg Technol 30:208–217

    Article  CAS  Google Scholar 

  • Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 80(5):R910–R923

    Article  CAS  Google Scholar 

  • Chellaram C, Murugaboopathi G, John AA, Sivakumar R, Ganesan S, Krithika S, Priya G (2014) Significance of nanotechnology in food industry. APCBEE Proc 8:109–113

    Article  CAS  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—Recent developments, risks and regulation. Trends Food Sci Technol 24(1):30–46

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • de Azeredo HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253

    Article  Google Scholar 

  • de Jong A, Boumans H, Slaghek T, Van Veen J, Rijk R, Van Zandvoort M (2005) Active and intelligent packaging for food: is it the future? Food Addit Contam 22(10):975–979

    Article  Google Scholar 

  • de Oliveira TLC, Soares RdA, Piccoli RH (2013) A Weibull model to describe antimicrobial kinetics of oregano and lemongrass essential oils against Salmonella Enteritidis in ground beef during refrigerated storage. Meat Sci 93(3):645–651

    Article  Google Scholar 

  • Dobrucka R, Cierpiszewski R (2014) Active and intelligent packaging food-research and development–a review. Pol J Food Nutr Sci 64(1):7–15

    Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24

    Article  CAS  Google Scholar 

  • Feng Y, Xie L, Chen Q, Zheng L-R (2015) Low-cost printed chipless rfid humidity sensor tag for intelligent packaging. Sens J IEEE 15(6):3201–3208

    Article  Google Scholar 

  • Gemili S, Yemenicioğlu A, Altınkaya SA (2010) Development of antioxidant food packaging materials with controlled release properties. J Food Eng 96(3):325–332

    Article  CAS  Google Scholar 

  • Ghanbarzadeh B, Oleyaei SA, Almasi H (2015) Nanostructured materials utilized in biopolymer-based plastics for food packaging applications. Crit Rev Food Sci Nutr 55(12):1699–1723

    Article  CAS  Google Scholar 

  • Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  Google Scholar 

  • Haghayegh M, Mirabedini SM, Yeganeh H (2015) Microcapsules containing multi-functional reactive isocyanate-terminated polyurethane prepolymer as a healing agent. Part 1: synthesis and optimization of reaction conditions. J Mater Sci 51(6):3056–3068

    Article  Google Scholar 

  • Huang J-Y, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 45(2):187–199

    Article  CAS  Google Scholar 

  • Imran M, Revol-Junelles A-M, Martyn A, Tehrany EA, Jacquot M, Linder M, Desobry S (2010) Active food packaging evolution: transformation from micro- to nanotechnology. Crit Rev Food Sci Nutr 50(9):799–821

    Article  CAS  Google Scholar 

  • Joven R, Garcia A, Arias A, Medina J (2015) Development of an active thermoplastic film with oxygen scavengers made of activated carbon and sodium erythorbate. Packag Technol Sci 28(2):113–121

    Article  CAS  Google Scholar 

  • Koskela J, Sarfraz J, Ihalainen P, Määttänen A, Pulkkinen P, Tenhu H, Nieminen T, Kilpelä A, Peltonen J (2015) Monitoring the quality of raw poultry by detecting hydrogen sulfide with printed sensors. Sens Actuators B Chem 218:89–96

    Article  CAS  Google Scholar 

  • Kumar D, Wu X, Fu Q, Ho JWC, Kanhere PD, Li L, Chen Z (2015) Development of durable self-cleaning coatings using organic–inorganic hybrid sol–gel method. Appl Surf Sci 344:205–212

    Article  CAS  Google Scholar 

  • Kuorwel KK, Cran MJ, Orbell JD, Buddhadasa S, Bigger SW (2015) Review of mechanical properties, migration, and potential applications in active food packaging systems containing nanoclays and nanosilver. Compr Rev Food Sci Food Saf 14(4):411–430

    Article  CAS  Google Scholar 

  • Lee K, Meng X, Kang T-Y, Ko S (2015) A dye-incorporated chitosan-based CO2 indicator for monitoring of food quality focusing on makgeolli quality during storage. Food Sci Biotechnol 24(3):905–912

    Article  CAS  Google Scholar 

  • Li X, Qiu C, Ji N, Sun C, Xiong L, Sun Q (2015) Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym 121:155–162

    Article  CAS  Google Scholar 

  • Liu H, Fang G, Deng Q, Wang S (2015a) A triple-dimensional sensing chip for discrimination of eight antioxidants based on quantum dots and graphene. Biosens Bioelectron 74:313–317

    Article  CAS  Google Scholar 

  • Liu S, Latthe SS, Yang H, Liu B, Xing R (2015b) Raspberry-like superhydrophobic silica coatings with self-cleaning properties. Ceram Int 41(9):11719–11725

    Article  CAS  Google Scholar 

  • Liu S, Liu X, Latthe SS, Gao L, An S, Yoon SS, Liu B, Xing R (2015c) Self-cleaning transparent superhydrophobic coatings through simple sol–gel processing of fluoroalkylsilane. Appl Surf Sci 351:897–903

    Article  CAS  Google Scholar 

  • Ma W, Zhang W, Zhao Y, Yu H, Wang S, Wang Y (2016) Predictions of healing performance for solvent-promoted self-healing materials by using Hansen solubility parameters. Mater Lett 163:244–246

    Article  CAS  Google Scholar 

  • Mahajan PV, Rodrigues FAS, Motel A, Leonhard A (2008) Development of a moisture absorber for packaging of fresh mushrooms (Agaricus bisporous). Postharvest Biol Technol 48(3):408–414

    Article  CAS  Google Scholar 

  • Mahieu A, Terrié C, Youssef B (2015) Thermoplastic starch films and thermoplastic starch/polycaprolactone blends with oxygen-scavenging properties: influence of water content. Ind Crops Prod 72:192–199

    Article  CAS  Google Scholar 

  • Martines E, Seunarine K, Morgan H, Gadegaard N, Wilkinson CDW, Riehle MO (2005) Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett 5(10):2097–2103

    Article  CAS  Google Scholar 

  • Meng H, Jinlian H (2010) A brief review of stimulus-active polymers responsive to thermal, light, magnetic, electric, and water/solvent stimuli. J Intell Mater Syst Struct 21(9):859–885

    Article  CAS  Google Scholar 

  • Meng X, Lee K, Kang T-Y, Ko S (2015) An irreversible ripeness indicator to monitor the CO2 concentration in the headspace of packaged kimchi during storage. Food Sci Biotechnol 24(1):91–97

    Article  CAS  Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4(1):39–47

    Article  CAS  Google Scholar 

  • Nopwinyuwong A, Trevanich S, Suppakul P (2010) Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage. Talanta 81(3):1126–1132

    Article  CAS  Google Scholar 

  • Pei Z, Yang Y, Chen Q, Wei Y, Ji Y (2016) Regional shape control of strategically assembled multishape memory vitrimers. Adv Mater 28(1):156–160

    Article  CAS  Google Scholar 

  • Pereira VA, de Arruda INQ, Stefani R (2015) Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time-Temperature Indicators for application in intelligent food packaging. Food Hydrocolloids 43:180–188

    Article  CAS  Google Scholar 

  • Puligundla P, Jung J, Ko S (2012) Carbon dioxide sensors for intelligent food packaging applications. Food Control 25(1):328–333

    Article  CAS  Google Scholar 

  • Qin H, Huo D, Zhang L, Yang L, Zhang S, Yang M, Shen C, Hou C (2012) Colorimetric artificial nose for identification of Chinese liquor with different geographic origins. Food Res Int 45(1):45–51

    Article  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Melvin Samuel S, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):1–23

    Article  Google Scholar 

  • Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51(8):723–730

    Article  CAS  Google Scholar 

  • Realini CE, Marcos B (2014) Active and intelligent packaging systems for a modern society. Meat Sci 98(3):404–419

    Article  Google Scholar 

  • Rhim J-W, Park H-M, Ha C-S (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652

    Article  CAS  Google Scholar 

  • Rukchon C, Nopwinyuwong A, Trevanich S, Jinkarn T, Suppakul P (2014) Development of a food spoilage indicator for monitoring freshness of skinless chicken breast. Talanta 130:547–554

    Article  CAS  Google Scholar 

  • Sarapulova O, Sherstiuk V, Shvalagin V, Kukhta A (2015) Photonics and nanophotonics and information and communication technologies in modern food packaging. Nanoscale Res Lett 10(1):1–8

    Article  Google Scholar 

  • Sharon E (2012) Swell approaches for changing polymer shapes. Science 335(6073):1179–1180

    Article  CAS  Google Scholar 

  • Shukla V, Kandeepan G, Vishnuraj MR (2015) Development of on-package indicator sensor for real-time monitoring of buffalo meat quality during refrigeration storage. Food Anal Methods 8(6):1591–1597

    Article  Google Scholar 

  • Tang XZ, Kumar P, Alavi S, Sandeep KP (2011) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52(5):426–442

    Article  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein j of nanotechnol 6(1):1769–1780

    Article  CAS  Google Scholar 

  • Wan L-Y, Han R-M, Wan Z-H (2015) The molecular mechanism of the thermo-responsive shape memory effect of self-assembled poly-{2,5-bis[(4-butoxyphenyl)oxycarbonyl]styrene} fiber. Iran Polym J 25(1):79–88

    Article  Google Scholar 

  • Wanihsuksombat C, Hongtrakul V, Suppakul P (2010) Development and characterization of a prototype of a lactic acid–based time–temperature indicator for monitoring food product quality. J Food Eng 100(3):427–434

    Article  Google Scholar 

  • Wen P, Zhu D-H, Wu H, Zong M-H, Jing Y-R, Han S-Y (2016) Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59:366–376

    Article  CAS  Google Scholar 

  • White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797

    Article  CAS  Google Scholar 

  • White S, Moore J, Sottos N, Krull B, Santa Cruz W, Gergely R (2014) Restoration of large damage volumes in polymers. Science 344(6184):620–623

    Article  CAS  Google Scholar 

  • Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33(5):479–522

    Article  CAS  Google Scholar 

  • Wu L, Yu Y, Zhi J (2015a) Low cost and large-area fabrication of self-cleaning coating on polymeric surface based on electroless-plating-like solution deposition approach. RSC Adv 5(14):10159–10164

    Article  CAS  Google Scholar 

  • Wu X, Yang X, Zhang Y, Huang W (2015b) A new shape memory epoxy resin with excellent comprehensive properties. J Mater Sci 51(6):3231–3240

    Article  Google Scholar 

  • Wu X, Liu L, Fang W, Qiao C, Li T (2016) Effect of hard segment architecture on shape memory properties of polycaprolactone-based polyurethane containing azobenzene. J Mater Sci 51(5):2727–2738

    Article  CAS  Google Scholar 

  • Ye Y, Huang J, Wang X (2015) Fabrication of a self-cleaning surface via the thermosensitive copolymer brush of p(nipaam-pegma). ACS Appl Mater Interfaces 7(40):22128–22136

    Article  CAS  Google Scholar 

  • Yildirim S, Röcker B, Rüegg N, Lohwasser W (2015) Development of palladium-based oxygen scavenger: optimization of substrate and palladium layer thickness. Packag Technol Sci 28(8):710–718

    Article  CAS  Google Scholar 

  • Youngblood JP, Sottos NR (2008) Bioinspired materials for self-cleaning and self-healing. MRS Bull 33(08):732–741

    Article  CAS  Google Scholar 

  • Zhu DY, Rong MZ, Zhang MQ (2015) Self-healing polymeric materials based on microencapsulated healing agents: from design to preparation. Prog Polym Sci 49–50:175–220

    Article  Google Scholar 

  • Ziani K, Fang Y, McClements DJ (2012) Encapsulation of functional lipophilic components in surfactant-based colloidal delivery systems: vitamin E, vitamin D, and lemon oil. Food Chem 134(2):1106–1112

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors appreciate the financial support from the Government of Tanzania through the Commission for Sciences and Technology (COSTECH) and Centre for Science & Technology of Non-Aligned and Other Developing Countries (NAM S&T Centre), Government of India, through Research Training Fellowship for Developing Country Scientists (RTF-DCS) 2014/2015. N.M thanks the management of the NM-AIST for permission granted to attend the training and the Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, Punjab, India for hosting the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nichrous Mlalila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mlalila, N., Kadam, D.M., Swai, H. et al. Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques. J Food Sci Technol 53, 3395–3407 (2016). https://doi.org/10.1007/s13197-016-2325-6

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2325-6

Keywords

Navigation