Skip to main content
Log in

Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Extensive communication occurs between plants and microorganisms during different stages of plant development in which signaling molecules from the two partners play an important role. Volatile organic compounds (VOCs) emission by certain plant-growth promoting rhizobacteria (PGPR) has been found to be involved in plant growth. However, little is known about the role of bacterial VOCs in plant developmental processes. In this work, we investigated the effects of inoculation with twelve bacterial strains isolated from the rhizosphere of lemon plants (Citrus aurantifolia) on growth and development of Arabidopsis thaliana seedlings. Several bacterial strains showed a plant growth promoting effect stimulating biomass production, which was related to differential modulation of root-system architecture. The isolates L263, L266, and L272a stimulated primary root growth and lateral root development, while L254, L265a and L265b did not significantly alter primary root growth but strongly promoted lateral root formation. VOC emission analysis by SPME-GC-MS identified aldehydes, ketones and alcohols as the most abundant compounds common to most rhizobacteria. Other VOCs, including 1-octen-3-ol and butyrolactone were strain specific. Characterization of L254, L266 and L272a bacterial isolates by 16S rDNA analysis revealed the identity of these strains as Bacillus cereus, Bacillus simplex and Bacillus sp, respectively. Taken together, our data suggest that rhizospheric bacterial strains can modulate both plant growth promotion and root-system architecture by differential VOC emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboaba SA, Ogunwande IA, Walker TM, Setzer WN, Oladosu IA, Ekundayo O (2009) Essential oil composition, antibacterial activity and toxicity of the leaves of Tetrapleura tetraptera (Schum. & Thonn.) taubert from Nigeria. Nat Prod Commun 4:287–290

    CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Campbell R, Graves M (1990) Anatomy and community structure of the rhizosphere. In: Lynch J (ed) the rhizosphere. Wiley, England, pp 11–34

    Google Scholar 

  • Cho MJ, Buescher RW, Johnson M, Janes M (2004) Inactivation of pathogenic bacteria by cucumber volatiles (E, Z)-2, 6-nonadienal and (E)-2-nonenal. J Food Prot 67:1014–1016

    CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka E (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  Google Scholar 

  • Farag M, Ryu C, Summer L, Paré P (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochem 67:2262–2268

    Article  CAS  Google Scholar 

  • Haas D, Keel C, Reimmann C (2002) Signal transduction in plant-beneficial rhizobacteria with biocontrol properties. Antonie van Leeuwenhoek 81:385–395

    Article  CAS  PubMed  Google Scholar 

  • Hassen AI, Labuschagne N (2010) Root colonization and growth enhancement in wheat and tomato by rhizobacteria isolated from the rhizoplane of grasses. World J Microbiol Biotechnol. doi:10.1007/s11274-010-0365-z

    Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81:1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Larsen AG, Knechel S (1997) Antimicrobial activity of food-related Penicillium sp. against pathogenic bacteria in laboratory media and a cheese model system. J Appl Microbiol 83:111–119

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farías-Rodríguez R, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin and ethylene independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Chin-A-Woeng T, Bloemberg G (2002) Microbe-plant interactions: principles and mechanisms. Antonie van Leeuwenhoek 81:373–383

    Article  CAS  PubMed  Google Scholar 

  • Matasyoh JC, Maiyo ZC, Ngure RM, Chepkorir R (2009) Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chem 113:226–229

    Article  CAS  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    Article  CAS  PubMed  Google Scholar 

  • Ortíz-Castro R, Martínez-Trujillo M, López-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signaling & Behavior 4:701–712

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  CAS  PubMed  Google Scholar 

  • Schulz S, Dickschat J (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Sivakumar PM, Sheshayan G, Doble M (2008) Experimental and QSAR of acetophenones as antibacterial agents. Chem Biol Drug Des 72:303–313

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Shamsbakhsh M, Taghavi M, Kazemi Sh (2005) Biological control of stem and root-rot of wheat caused by Bipolaris spp. by using antagonistic bacteria, fluorescent Pseudomonas and Bacillus spp. J Biol Sci 5:347–353

    Article  Google Scholar 

  • Valencia-Cantero E, Martínez-Romero E, Pena-Cabriales JJ (2003) The corrosion effects of sulfate-and ferric-reducing bacterial consortia on steel. Geomicrobiol J 20:157–170

    Article  CAS  Google Scholar 

  • Yang J, Kloepper J, Ryu C (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Weisburg W, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Whipps J (2001) Microbial interaction and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  PubMed  Google Scholar 

  • Zhang H, Kim M, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag M, Ryu C, Allen R, Melo I, Paré P (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226:839–851

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim M, Kornyeyev D, Holaday S, Paré P (2008a) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. The Plant J 56:264–273

    Article  CAS  Google Scholar 

  • Zhang H, Kim M, Sun Y, Dowd S, Shi H, Paré P (2008b) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant Microbe Interact 21:737–744

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Consejo Nacional de Ciencia y Tecnología (CONACYT) (grant number 60999) and the Consejo de la Investigación Científica (UMSNH) (grant number 2.24) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lourdes Macías-Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Luna, F.M., López-Bucio, J., Altamirano-Hernández, J. et al. Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51, 75–83 (2010). https://doi.org/10.1007/s13199-010-0066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-010-0066-2

Keywords

Navigation