Skip to main content

Advertisement

Log in

Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Agricultural productivity suffers a heavy loss due to plant pathogens, insect pests and various abiotic stresses. Agriculture being the world’s largest economic sector, it is the need of time to find and establish the ideal strategy for sustainable agriculture and improvement in crop growth. Endophytes are microorganisms that asymptomatically grow within the plant tissues without causing any disease to the host. Endophytic fungi live in symbiotic association with plants and play an important role in plant growth promotion, higher seed yield and plants resistant to various biotic, abiotic stresses and diseases. Many are able to produce antimicrobial compounds, plant growth hormones and various agrochemical bioactive metabolites. These mycoendophytes hold enormous potential for the development of eco-friendly and economically viable agricultural products. In this review we focused on the endophytic fungi recovered from different medicinal plants, their active principles involved in plant growth enhancement and the applications of fungal endophytes in agriculture. Moreover, we also discussed about endophytic fungi and their pragmatic approach towards sustainable food and agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali S. (2013) Plant growth-promoting bacterial endophytes that contain acc deaminase: isolation, characterization, and use. Thesis,University of Waterloo. Waterloo, Ontario, Canada

  • Amna T, Khajuria RK, Puri SC, Verma V, Qazi GN (2006) Determination and quantification of camptothecin in an endophytic fungus by liquid chromatography positive mode electrospray ionization tandem mass spectrometry. Curr Sci 91(2):208–212

    CAS  Google Scholar 

  • Arnold AE (2008) Endophytic fungi: hidden components of tropical community ecology. In: Carson WP, Schnitzer SA (eds) Tropical forest community ecology. Blackwell Publishing Ltd, West Sussex, pp 178–188

    Google Scholar 

  • Arnold A, Maynard Z, Gilbert G, Coley P, Kursar T (2000) Are tropical endophytes hyperdiverse? Ecol Lett 3(4):267–274

    Google Scholar 

  • Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N, Herre EA (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100(26):15649–15654

    PubMed Central  PubMed  CAS  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719

    PubMed  CAS  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Marcel Deker Inc, New York, pp 99–101

    Google Scholar 

  • Bacon CW, Porter JK, Robins JD, Luttrell ES (1977) Epichloë typhi from toxic tall fescue grasses. Appl Environ Microbiol 34:576–581

    Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295

    PubMed Central  PubMed  CAS  Google Scholar 

  • Baker GM, Pottinger RP, Addison PJ, Prestidge R (1984) Effect of Lolium endophyte fungus infections on behaviour of argentine stem weevil. N Z J Agric Res 27:271–277

    Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    PubMed  CAS  Google Scholar 

  • Bandara WMMS, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31:645–650

    PubMed  CAS  Google Scholar 

  • Banerjee D (2011) Endophytic fungal diversity in tropical and subtropical plants. Res J Microbiol 6:54–62

    Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Google Scholar 

  • Bashyal B, Li JY, Strobel GA, Hess WM (1999) Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallichiana). Mycotaxon 72:33

    Google Scholar 

  • Belesky DP, Malinowski DP (2000) Abiotic stresses and morphological plasticity and chemical adaptations of Neotyphodium-infected tall fescue plants. In: Bacon CW, Jr. White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 455–484

    Google Scholar 

  • Berg G (2009) Plant-micro interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    PubMed  CAS  Google Scholar 

  • Bhagobaty RK, Joshi SR (2009) Promotion of seed germination of Green gram and Chick pea by Penicillium verruculosum RS7PF, a root endophytic fungus of Potentilla fulgens L. Adv Biotechnol 16–18

  • Bomke C, Rojas MC, Gong F, Hedden P, Tudzynski B (2008) Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl Environ Microbiol 74:5325–5339

    PubMed Central  PubMed  Google Scholar 

  • Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503

    PubMed  CAS  Google Scholar 

  • Brodersen P, Petersen M, Nielsen HB, Zhu S, Newman MA, Shokat KM, Rietz S, Parker J, Mundy J (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546

    PubMed  CAS  Google Scholar 

  • Bush LP, Wilkinson HH, Schard CL (1997) Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol 114:1–7

    PubMed Central  PubMed  CAS  Google Scholar 

  • Choi WY, Rim SO, Lee JH, Lee JM, Lee IJ, Cho KJ (2005) Isolation of gibberellins-producing fungi from the root of several Sesamum indicum plants. J Microbiol Biotechnol 15:22–28

    CAS  Google Scholar 

  • Clay K (1998) Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology 69(1):10–16

    Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequence of endophyte symbiosis with grasses. Am Nat 160:99–127

    Google Scholar 

  • Cohen AC, Bottini R, Piccoli P (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regul 54:97–103

    CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959

    PubMed Central  PubMed  CAS  Google Scholar 

  • Contreras-Cornejo HA (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    PubMed Central  PubMed  CAS  Google Scholar 

  • Cox PA, Balick MJ (1994) The Ethnobotanical approach to drug discovery. Sci Am 270(6):82–87

    Google Scholar 

  • Daly JM, Inman RE (1958) Changes in auxin levels in safflower hypocotyls infected with Puccinia carthami. Phytopathology 48:91–97

    CAS  Google Scholar 

  • Davies PJ (2004).The plant hormones: their nature, occurrence, and functions. Chapter A. Davies PJ (eds) Plant Hormones biosynthesis, signal transduction, action. 3rd edition. Kluwer Academic Publisher

  • Dekhuijzen HM, Overeem JC (1971) The role of cytokinins in clubroot formation. Physiol Plant Pathol 1:151–161

    CAS  Google Scholar 

  • Dighton J (2003) Fungi in ecosystem processes. Marcel Dekker, New York. ISBN 978-0-8247-4244-7

    Google Scholar 

  • Dreyfuss M, Chapela I (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. The discovery of natural products with therapeutic potential (Gullo VP, ed), 26(5) pp 26(5):49–80

  • Easton HS, Lyons TB, Cooper BM, Mace WJ (2009) Loline alkaloids for better protection of pastures from insect pests. Proc N Z Grassl Assoc 71:151–154

    Google Scholar 

  • Fávaro LC, Sebastianes FL, Araújo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds andinduces root growth. PLoS One 7(6):e36826. doi:10.1371/journal.pone.0036826

    PubMed Central  PubMed  Google Scholar 

  • Franken P, Butehorn B, Verma A (1998) Piriformospora indica, a cultivable root cell-infecting fungus promotes the growth of a broad range of plant species. p. 65. In Ahonen-Jonnarth U, Danell E, Fransson P, Kårén O, Lindahl B, Rangel I, and R

  • Gangwar M, Rani S, Sharma N (2012) Diversity of endophytic actinomyetes from wheat and its potential as plant growth promoting and biocontrol agents. J Adv Lab Res Biol 3(1):18–23

    Google Scholar 

  • Gasoni L, De Gurfinkel BS (1997) The endophyte Cladorrhinum forcundissimum in cotton roots: phosphorus uptake and host growth. Mycol Res 101:867–870

    Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW, Weon HY, Lakshminarasimhan C (2008) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    PubMed  Google Scholar 

  • Hamayun M, Khan SA, Ahmad N, Tang DS, Kang SM, Na CI, Sohn EY, Hwang YH, Shin DH, Lee BH, Kim JG, Lee IJ (2009a) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632

    CAS  Google Scholar 

  • Hamayun M, Khan SA, Iqbal I, Hwang YH, Shin DH, Sohn EY, Lee BH, Na CI, Lee IJ (2009b) Chrysosporium pseudomerdarium produces gibberellins and promotes plant growth. J Microbiol 47:425–430

    PubMed  CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan MA, Khan AL, Kang SM, Kim SK, Joo GJ, Lee IJ (2009c) Gibberellin production by pure cultures of a new strain of Aspergillus fumigates. World J Microbiol Biotechnol 25:1785–1792

    CAS  Google Scholar 

  • Hamayun M, Khan SA, Kim HY, Chaudhary MF, Hwang YH, Shin DH, Kim IK, Lee BH, Lee IJ (2009d) Gibberellin production and plant growth enhancement by newly isolated strain of Scolecobasidium tshawytschae. J Microbiol Biotechnol 19(6):560–565

    PubMed  CAS  Google Scholar 

  • Hamayun M, Khan SA, Iqbal I, Ahmad B, Lee IJ (2010a) Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of Crown Daisy (Chrysanthemum coronarium). J Microbiol Biotechnol 20(1):202–207

    PubMed  CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL, Rehman G, Kim YH, Iqbal I, Hussain J, Sohn EY, Lee IJ (2010b) Gibberellin production and plant growth promotion from pure cultures of Cladosporium sp. MH-6 isolated from cucumber (Cucumis sativus L.). Mycologia 102(5):989–995

    PubMed  CAS  Google Scholar 

  • Hasan HAH (2002) Gibberellin and auxin production by plant root fungi and their biosynthesis under salinity-calcium interaction. Rostlinná Výroba 48:101–106

    CAS  Google Scholar 

  • Herre EA, Mejia LC, Kyllo DA, Rojas E, Maynard Z, Butler A, Van Bael SA (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88(3):550–558

    PubMed  Google Scholar 

  • Hill NS, Belesky DP, Stringer WC (1990) Competitiveness of tall fescue as influenced by Acremonium coenophialum. Crop Sci 31:185–190

    Google Scholar 

  • Hwang JS, You YH, Bae JJ, Khan SA, Kim JG, Choo YS (2011) Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi. J Coastal Res 27:544–548

    Google Scholar 

  • Hyde KD, Doytong K (2008) The fungal endophyte dilemma. Fungal Div 33:163–173

    Google Scholar 

  • Jalgaonwala RE, Mohite BV, Mahajan RT (2011) A review: natural products from plant associated endophytic fungi. J Microbiol Biotech Res 1(2):21–32

    Google Scholar 

  • Jerry B (1994) A role of endophytic fungi in regulating nutrients and energy in plants within a desert ecosystem. International symposium and workshop on desertification in developed countries. Accessed on 2011/10/25

  • Jha P, Kumar A (2009) Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol 58:179–188

    PubMed  CAS  Google Scholar 

  • Karsten K, Umar F, Ulrich F, Barbara S, Siegfried D, Gennaro P, Piero S, Sándor A, Tibor K (2007) Secondary metabolites isolated from an endophytic phoma sp.absolute configuration of tetrahydropyrenophorol using the solid-state TDDFT CD methodology. Eur J Org Chem 19:3206–3211

    Google Scholar 

  • Kawaguchi M, Sydn K (1996) The excessive production of indole-3-acetic acid and its significance in studies of the biosynthesis of this regulator of plant growth and development. Plant Cell Physiol 37:1043–1048

    PubMed  CAS  Google Scholar 

  • Kawaide H (2006) Biochemical and molecular analysis of gibberellins biosynthesis in fungi. Biosci Biotech Biochem 70:583–590

    CAS  Google Scholar 

  • Kawaide H, Sassa T (1993) Accumulation of gibberellins A1 and the metabolism of gibberellin A9 to gibberellin A1 in a Phaeosphaeria sp. L 487 culture. Biosci Biotech Biochem 57:1403–1405

    CAS  Google Scholar 

  • Khan AL, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13(1):86

    PubMed Central  PubMed  CAS  Google Scholar 

  • Khan SA, Hamayun M, Yoon HJ, Kim HY, Suh SJ, Hwang SK, Kim JM, Lee IJ, Choo YS, Yoon UH, Kong WS, Lee BM, Kim JG (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231

  • Khan SA, Hamayun M, Kim HY, Yoon HJ, Seo JC, Choo YS (2009a) A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellins production. Biotechnol Lett 31:283–287

    PubMed  CAS  Google Scholar 

  • Khan SA, Hamayun M, Kim HY, Yoon HJ, Lee IJ, Kim JG (2009b) Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J Microbiol Biotechnol 25:829–833

    CAS  Google Scholar 

  • Khan AL, Hamayun M, Ahmad N, Waqas M, Kang SM, Kim YH, Lee IJ (2011a) Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol Plant 143(4):329–343

    PubMed  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee IJ (2011b) Ameliorative symbiosis of endophyte (Penicillium funiculosum sp. LHL06) under salt stress elevated plant growth of Glycine max L. Plant Physiol Biochem 49(8):852–862

    PubMed  CAS  Google Scholar 

  • Khan AL, Hamayun M, Kim YH, Kang SM, Lee JH, Lee IJ (2011c) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447

    CAS  Google Scholar 

  • Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH, Lee IJ (2012a) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of paecilomyces formosus LHL10. BMC Microbiol 12:3

    PubMed Central  PubMed  CAS  Google Scholar 

  • Khan SA, Hamayun M, Khan AL, Lee IJ, Shinwari ZK, Kim JG (2012b) Isolation of plant growth promoting endophytic fungi from dicots inhabiting coastal sand dunes of Korea. Pak J Bot 44(4):1453–1460

    Google Scholar 

  • Kharwar RN, Verma VC, Strobel G, Ezra D (2008) The endophytic fungal complex of Catharanthus roseus (L.) G. Don. Curr Sci 95(2):228–233

    CAS  Google Scholar 

  • Kiraly Z, El-Hammady M, Pozsar BI (1967) Increased cytokinin activity of rust infected bean and broad bean leaves. Phytopathology 57:93–94

    CAS  Google Scholar 

  • Kloepper JW, Ryu CM (2006) Bacterial endophytes as elicitors of induced systemic resistance. Soil Biol 9:33–52

    Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, Inc., New York, pp 199–233

    Google Scholar 

  • Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    CAS  Google Scholar 

  • Kumar V, Asija (2000) Biodiversity conservation in: biodiversity-principles and conservation. Agrobiosis (India), Jodhpur

    Google Scholar 

  • Kumar M, Yadav V, Kumar H, Sharma R, Singh A, Tuteja N, Johri AK (2011) Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav 6(5):723–725

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kumari R, Kishan H, Bhoon YK, Varma A (2003) Colonization of cruciferous plants by Piriformospora indica. Curr Sci 85(12):1672–1674

    Google Scholar 

  • Latch GCM, Hunt WF, Musgrave DR (1985) Endophytic fungi affect growth of perennial ryegrass. N Z J Agric Res 28:165–168

    Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentella M, Garcia-Flores L, Escamilla JE, Kennedy C (2004) Indole-3-acetic acid biosynthesis is deficient in Glucon acetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J Bacteriol 186:5384–5391

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lee YC, Johnson JM, Chien CT, Sun C, Cai D, Lou B, Oelmuller R, Yeh KW (2011) Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant-Microbe Interactions 24:421–431

    Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? a metaanalysis of studies published between 1988 and 2003. New Phytol 168(1):189–204

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sánchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE encodes a MYC transcription factor essential to discriminate between different jasmonate- regulated defence responses in Arabidopsis. Plant Cell 16:1938–1950

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lucangeli C, Bottini R (1997) Effects of Azospirillum spp. on endogenous gibberellin content and growth of maize (Zea mays L.) treated with uniconazole. Symbiosis 23:63–72

    CAS  Google Scholar 

  • Ludwig-Müller J (1999) The biosynthesis of auxins. Curr Top Plant Biol 1:77–88

    Google Scholar 

  • Ludwig-Müller J (2000) Hormonal balance in plants during colonization by mycorrhizal fungi. In: Douds DD, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, Dordrecht, pp 263–285

    Google Scholar 

  • Ludwig-Müller J, Vertocnik A, Town CD (2005) Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. J Exp Bot 56:2095–2105

    PubMed  Google Scholar 

  • Machungo C, Losenge T, Kahangi E, Coyne D, Dubois T, Kimenju J (2009) Effect of endophytic Fusarium oxysporum on growth of tissue-cultured Banana plants. Afr J Hort Sci 2:160–167

    Google Scholar 

  • Mahmoud RS, Narisawa K (2013) A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions. PLoS One 8(11):e78746. doi:10.1371/journal.pone.0078746

    PubMed Central  PubMed  CAS  Google Scholar 

  • Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011) Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotech 4:523–532

    CAS  Google Scholar 

  • Mander LN (2003) Twenty years of gibberellin research. Nat Prod Rep 20:49–69

    PubMed  CAS  Google Scholar 

  • Marina S, Angel M, Silva-Flores MA, Cervantes-Badillo MG, Rosales-Saavedra MT, Islas-Osuna MA, Casas-Flores S (2011) The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J Microbiol Biotechnol 21(7):686–696

    Google Scholar 

  • Martin GC (1983) The Biochemistry and Physiology of Gibberellins, A. Crozier (ed.). Praeger, New York. 2: 395–444

  • Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents Biotechnol 4:81–95

    CAS  Google Scholar 

  • Miliūtė I, Buzaitė O (2011) IAA production and other plant growth promoting traits of endophytic bacteria from apple tree. Biogeosciences 57(2):98–102

    Google Scholar 

  • Ming Q, Su C, Zheng C, Jia M, Zhang Q, Zhang H, Rahman K, Han T and Qin L, (2013) Elicitors fromthe endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot. (Epub ahead of print)

  • Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277

    PubMed  CAS  Google Scholar 

  • Nadeem A, Hamayun M, Khan SA, Khan AL, Lee IJ, Shin DH (2010) Gibberellin-producing endophytic fungi isolated from Monochoria vaginalis. J Microbiol Biotechnol 20(12):1744–1749

    Google Scholar 

  • Naik BS, Shashikala J, Krishnamurthy YL (2008) Host growth characteristics influenced by seed inoculation with microorganisms. World J Agric Sci 4(S):891–895

    Google Scholar 

  • Nassar HA, El-Tarabily KA, Sivasithamparam K (2005) Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays) roots. J Biol Fertil Soils 42:2

    Google Scholar 

  • Niere B (2001) Significance of non-pathogenic isolates of Fusarium oxysporum Schlecht, Fries for the biological control of the burrowing nematode Radopholus similis (Cobb) Thorne on tissue-cultured bananas. PhD Thesis, University of Bonn, Germany.

  • Nishijima T, Koshioka M, Yamazaki H, Mander LN (1995) Endogenous gibberellins and bolting in cultivars of Japanese radish. Acta Hortic 394:199–206

    CAS  Google Scholar 

  • Oelmüller R, Shahollari B, Peškan-Berghöfer T, Trebicka A, Giong PH, Sherameti I, Oudhoff M, Venus Y, Altschmied L, Varma A (2004) Molecular analyses of the interaction between Arabidopsis roots and the growth-promoting fungus Piriformospora indica. Endocytobiosis Cell Res 15:504–517

    Google Scholar 

  • Pandey MK, Singh AK, Singh RB (2002) Mycotoxic potential of somehigher plants. Plant Dis Res 17:51–56

    Google Scholar 

  • Peng J, Harberd NP (2002) The role of GA-mediated signalling in the control of seed germination. Curr Opin Plant Biol 5:376–381

    PubMed  CAS  Google Scholar 

  • Petrini OTN, Sieber LT, Viret O (1992) Ecology metabolite production and substrate utilization in endophytic fungi. Natl Toxin 1:185–196

    CAS  Google Scholar 

  • Pieterse CM, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    PubMed  CAS  Google Scholar 

  • Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    PubMed  CAS  Google Scholar 

  • Pirttilä AM, Joensuu P, Pospiech H, Jalonen J, Hohtola A (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol Plant 121:305–312

    PubMed  Google Scholar 

  • Pocasangre L (2000) Biological enhancement of tissue culture plantlets with endophytic fungi for the control of the burrowing nematode Radopholus similis and the panama disease (Fusarium oxysporum f. sp. cubense). PhD Thesis, University of Bonn, Germany

  • Posada F, Vega FE (2005) Establishment of the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia 97:1195–1200

    PubMed  Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol. doi:10.1002/jobm.201200367

    Google Scholar 

  • Prince L, Prabakaran P (2011) Antifungal activity of medicinal plants against plant pathogenic fungus Colletotrichum falcatum. Asian J Plant Sci Res 1(1):84–87

    Google Scholar 

  • Qin S, Xing K, Jiang J, Xu L, Li W (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    PubMed  CAS  Google Scholar 

  • Rademacher W (1994) Gibberellin formation in microorganisms. Plant Growth Reg 15:303–314

    CAS  Google Scholar 

  • Rai MK (2003) Plant-Derived Antimycotics. Haworth Press, Binghamton

    Google Scholar 

  • Rai M, Varma A (2005) Arbuscular mycorrhiza-like biotechnological potential of Piriformospora indica, which promotes the growth of Adhatoda vasica Nees. Electron J Biotechnol 8(1):107–112

    Google Scholar 

  • Rai MK, Acharya D, Singh A, Varma A (2001) Positive growth responses of the medicinal plants Spilanthes calva and Withania sonmifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza 11:123–128

    PubMed  CAS  Google Scholar 

  • Rai MK, Varma A, Pandey AK (2004) Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica. Mycoses 47:479–481

    PubMed  CAS  Google Scholar 

  • Rai M, Gade A, Rathod D, Dar M, Varma A (2012) Review: mycoendophytes in medicinal plants: diversity and bioactivities. Nusantara Biosci 4(2):86–96

    Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43:439–463

    CAS  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA, Greer C, Espino L (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6:e14823

    PubMed Central  PubMed  CAS  Google Scholar 

  • Robert PR, Kieran G, Ashley F, David JR, David ND (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Google Scholar 

  • Rodrigues-Heerklotz KF, Drandarov K, Heerklotz J, Hesse M, Werner C (2001) Guignardic acid, a novel type of secondary metabolite produced by the endophytic fungus guignardia sp.: isolation, structure elucidation, and asymmetric synthesis. Helv Chim Aca 84:3766

    CAS  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–30

    Google Scholar 

  • Rodríguez-Gacio MDC, Matilla-Vázquez MA, Matilla AJ (2009) Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signal Behav 4(11):1035–1048

    Google Scholar 

  • Rothballer M, Eckert B, Schmid M, Fekete A, Schloter M, Lehner A, Pollmann S, Hartmann A (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 66:85–95

    PubMed  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9

    PubMed  CAS  Google Scholar 

  • Schäfer P, Pfiffi S, Voll LM, Zajic D, Chandler PM, Waller F, Scholz U, Pons-Kühnemann J, Sonnewald S, Sonnewald U, Kogel KH (2009) Manipulation of plant innate immunity and gibberellins as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474

    PubMed  Google Scholar 

  • Schardl CL, Phillips TD (1997) Grass endophytes. Plant Dis 81:5

    Google Scholar 

  • Schulz B (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycolog Res 106:996–1004

    CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycolog Res 109:661–686

    Google Scholar 

  • Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85:371–381

    PubMed  CAS  Google Scholar 

  • Sherameti I, Tripathi S, Varma A, Oelmüller R (2008a) The root colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress–related genes in leaves. Mol Plant-Microbe Interact 21:799–807

    PubMed  CAS  Google Scholar 

  • Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A, Grundler FM, Oelmüller R (2008b) PYK10, a β-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J 21:799–807

    CAS  Google Scholar 

  • Shi Y, Lou K, Li C (2009) Isolation, quantity distribution and characterization of Shinozaki, K. and Yamaguchi, S. K. (1997) Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327–334

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    PubMed  CAS  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohana Kumar P, Ravikanth G, Spiteller M, Vasudeva R, Uma SR (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71(1):117–122

    PubMed  CAS  Google Scholar 

  • Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, Santos P, Feussner I, Pawlowski K (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131(4):581–589

    PubMed  CAS  Google Scholar 

  • Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacifi c Yew. Science 260:214–216

    PubMed  CAS  Google Scholar 

  • Strobel GA (2003) Endophytes as sources of bioactive products. Microb Infect 5:535–544

    CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sturz AV, Christie B, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable system of crop production. Crit Rev Plant Sci 19:1–30

    Google Scholar 

  • Sudha, Hurek T, Varma A (1998) Active translocation of phosphate (P32) to rice and carrot by Piriformospora indica. In: Ahonen-Jonnarth U, Danell E, Fransson P, Karen O, Lindahl B, Rangel I, Finlay R (eds) Second International Congress on Mycorrhiza. Uppsala, Sweden, pp 5–10

    Google Scholar 

  • Suryanarayanan TS, Wittlinger SK, Faeth SH (2005) Endophytic fungi associated with cacti in Arizona. Mycol Res 109(5):635–639

    PubMed  Google Scholar 

  • Sziraki I, Balazs E, Kiraly Z (1975) Increased levels of cytokinin and indole-acetic acid peach leaves infected with Taphrina deformans. Physiol Plant Pathol 5:45–50

    CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant Physiology.3rd edition. Sinauer Associates, Inc., Publishers, Massachusettes

    Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Google Scholar 

  • Tenguria RK, Khan FN (2011) Distribution of endophytic fungi in leaves of Azadirachta indica A. Juss. (Neem) of Panchmarhi Biosphere Reserve. Curr Bot 2(2):27–29

    Google Scholar 

  • Thakur A, Kaur S, Kaur A, Singh V (2013) Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environ Entomol 42(2):240–246

    PubMed  Google Scholar 

  • Ting ASY, Meon S, Kadir J, Radu S, Singh G (2007) Endophytic microorganisms as potential growth promoters of banana. J Biocontrol 53:541–553

    Google Scholar 

  • Tsavkelova EA, Bömke C, Netrusov AI, Weiner J, Tudzynski B (2008) Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genet Biol 45:1393–1403

    PubMed  CAS  Google Scholar 

  • Tuomi T, Ilvesoksa J, Laakso S, Rosenqvist H (1993) Interaction of abscisic acid and indole-3-acetic acid producing fungi with salix leaves. J Plant Growth Regul 12:149–156

    CAS  Google Scholar 

  • Ueguchi TM, Nakajima M, Motoyuki A, Matsuoka M (2007) Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol 58:183–198

    Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark, septate endophytic fungus, Heteroconium chaetospira and a non-mycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    PubMed  CAS  Google Scholar 

  • Van AB, Peres CM, Doty SL, Yoon JM, Schnoor JL (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34) 54:1191–1196

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • Vanessa MC, Christopher MMF (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:31787–31794

    Google Scholar 

  • Varma A, Verma S, Sudha SN, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65(6):2741–2744

    PubMed Central  PubMed  CAS  Google Scholar 

  • Varma A, Singh A, Sudha S, Sahay N, Sharma J, Roy A, Kumari M, Rana D, Thakran S, Deka D, Bharti K, Franken P, Hurek T, Blechert O, Rexer KH, Kost G, Hahn A, Hock B, Maier W, Walter M, Strack D, Kranner I (2001) Piriformospora indica: A cultivable mycorrhiza-like endosymbiotic fungus. In: Bock B (ed) Mycota IX. Springer Series, Springer-Verlag, Berlin, pp 123–150

    Google Scholar 

  • Varma A, Hartmann A, Bakshi M, Oelmueller R, Lou B (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1(2):117–131

    Google Scholar 

  • Verma S, Varma A, Rexer K, Hassel A, Kost G, Sarbhoy A, Bisen P, Butehorn B, Franken P (1998) Piriformaspora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90:896–903

    CAS  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Mishra A, Kharwar RN, Gange A (2009) Endophytic actinomycetes from Azadirachta indica A. Juss.: isolation, diversity, and anti-microbial activity. Microb Ecol 57:749–756

    PubMed  Google Scholar 

  • Vieira ML, Hughes AF, Gil VB, Vaz AB, Alves TM, Zani CL, Rosa CA, Rosa LH (2012) Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Can J Microbiol 58(1):54–66

    PubMed  CAS  Google Scholar 

  • Vizarova G (1979) Changes in the level of endogenous cytokinins of barley during the development of powdery mildews. Phytopathol Zool 95:314–329

    Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils 40(1):36–43

    CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Huckelhoven R, Neumann C, Von Wettstein D, Franken P, Kogel KH (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield. PNAS 102:13386–13391

    PubMed Central  PubMed  CAS  Google Scholar 

  • Waqas M, Khan AL, Hamayun M, Kamran M, Kang SM, Kim YH, Lee IJ (2012a) Assessment of endophytic fungi cultural filtrate on soybean seed germination. Afr J Biotechnol 11(85):15135–15143

    Google Scholar 

  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ (2012b) Endophytic fungi produce gibberellins and indole-acetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773

    PubMed  CAS  Google Scholar 

  • Wei J, Xu T, Guo L, Liu A, Zhang Y, Pan X (2009) Endophytic Pestalotiopsis species associated with plants of Podocarpaceae Theaceae and Taxaceae in southern China. Fun Div 24:55–74

    Google Scholar 

  • Weihong Z (2004) Effects of Gibberellin on seed germination and seedling growth of Lilac. For Sci Technol 2004:4

    Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Managing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    CAS  Google Scholar 

  • Wen-guang MA, Zheng Y, Wen-long S, Bi-qing S, Yong-zhi N (2009) Gibberellin priming treatment improve vigour of pelleted seed and seedling quality in tobacco. Acta Agric Zhejiangensis 2009:3

    Google Scholar 

  • Wiyakrutta S, Sriubolmas N, Panphut W, Thongon N, Danwisetkanjana K, Ruangrungsi N, Meevootisom V (2004) Endophytic fungi with anti-microbial, anti-cancer and anti-malarial activities isolated from Thai medicinal plants. World J Microbiol Biotechnol 20:265–272

    Google Scholar 

  • Ya-li LV, Fu-sheng Z, Juan C, Jin-long C, Yong-mei X, Xiang-dong L, Shun-xing G (2010) Diversity and antimicrobial activity of endophytic fungi associated with the Alpine plant Saussurea involucrate. Biol Pharm Bull 33(8):1300–1306

    Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    PubMed  CAS  Google Scholar 

  • You YH, Yoon H, Kang SM, Shin JH, Choo YS, Lee IJ, Lee JM, Kim JG (2012) Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol 22(11):1549–1556

    PubMed  Google Scholar 

  • Yuan ZL, Zhang CL, Lin FC (2010) Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul 29:116–126

    CAS  Google Scholar 

  • Zabalgogeazcoa I, Ciudad AG, Vázquez de Aldana BR, Criado BG (2006) Effects of the infection by the fungal endophyte Epichloë festucae in the growth and nutrient content of Festuca rubra. Eur J Agron 24:374–384

    CAS  Google Scholar 

  • Zhang HM (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    PubMed  CAS  Google Scholar 

  • Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini-Rev Med Chem 11:159–168

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, M., Rathod, D., Agarkar, G. et al. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis 62, 63–79 (2014). https://doi.org/10.1007/s13199-014-0273-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-014-0273-3

Keywords

Navigation