Skip to main content

Advertisement

Log in

Photon-enhanced thermionic emission solar energy converters with GaAs wire array cathode under external electric field

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In this work, a theoretical emission model for GaAs wire array cathode based on photon-enhanced thermionic emission (PETE) under the action of external electric field is deduced utilizing two-dimensional continuity equations. With the electron energy distribution and elevation angle of emitted electron considered, the electron collection probability for each emission surface of GaAs wire array cathode varying with the field intensity is simulated. Combining emission current density with electron collection probability, the effective collection current density of GaAs wire array cathode is obtained. Results suggest that the external electric field can effectively enhance the collection probability of emitted electrons within GaAs wire array, which contributes to the improvement of the actual photoelectric conversion capability of GaAs wire array cathodes. For GaAs wire array cathodes, the effective collection current density can reach the maximum value with the incident angle of 20° and field intensity of 0.9 V/μm. Applying a transparent phosphorus-doped diamond film as the anode material, the simulated conversion efficiency increases from 18.85 to 44.80% as the electron affinity of GaAs wire cathode rises from 0 to 0.6 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen GA (1971) The performance of negative electron affinity photocathodes. J Phys D Appl Phys 4:308

    Article  CAS  Google Scholar 

  • Chen SD, Chen YY, Lee SC (2005) Transverse-electric-field-enhanced response in InAs/AlGaAs/GaAs quantum-dot infrared photodetectors. Appl Phys Lett 86(25):6912

    Google Scholar 

  • Chen Y, Arinze ES, Pamquist N, Thon SM (2016) Advancing colloidal quantum dot photovoltaic technology. Nanophotonics 5(1):31

    Google Scholar 

  • Chow TT (2010) A review on photovoltaic/thermal hybrid solar technology. Appl Energ 87(2):365

    Article  CAS  Google Scholar 

  • Cui Z, Ke X, Li E, Liu T (2016) Electronic and optical properties of titanium-doped GaN nanowires. Mater Des 96:409

    Article  CAS  Google Scholar 

  • Cui Z, Li E, Ke X, Zhao T, Yang Y, Ding Y, Liu T, Qu Y, Xu S (2017) Adsorption of alkali-metal atoms on GaN nanowires photocathode. Appl Surf Sci 423:829

    Article  CAS  Google Scholar 

  • Datas A, Algora C (2010) Detailed balance analysis of solar thermophotovoltaic systems made up of single junction photovoltaic cells and broadband thermal emitters. Sol Energ Mat Sol C 94(12):2137

    Article  CAS  Google Scholar 

  • Ding X, Ge X, Zou J, Zhang Y, Peng X, Deng W, Cheng Z, Zhao W, Chang B (2016) Photoemission characteristics of graded band-gap AlGaAs/GaAs wire photocathode. Opt Commun 367:149

    Article  CAS  Google Scholar 

  • Eden RC, Moll JL, Spicer WE (1967) Experimental evidence for optical population of the X minima in GaAs. Phys Rev Lett 18:597

    Article  CAS  Google Scholar 

  • Feng C, Zhang Y, Qian Y, Chang B, Shi F, Jiao G, Zou J (2015) Photoemission from advanced heterostructured AlxGa1−xAs/GaAs photocathodes under multilevel built-in electric field. Opt Express 23(15):19478

    Article  CAS  Google Scholar 

  • Feng C, Zhang Y, Qian Y, Wang Z, Liu J, Chang B, Shi F, Jiao G (2018) High-efficiency AlxGa1−xAs/GaAs cathode for photon-enhanced thermionic emission solar energy converters. Opt Commun 413:1

    Article  CAS  Google Scholar 

  • Garg HP, Adhikari RS (1997) Conventional hybrid photovoltaic/thermal (PV/T) air heating collectors: steady-state simulation. Renew Energy 11(3):363

    Article  CAS  Google Scholar 

  • Ge X, Zou J, Deng W, Peng X, Wang W, Jiang S, Ding X, Chen Z, Zhang Y, Chang B (2015) Theoretical analysis and modeling of photoemission characteristics of GaAs nanowire array photocathodes. Mater Res Express 2(9):095015

    Article  Google Scholar 

  • Geronimo GD, Deptuch G, Dragone A, Radeka V, Rehak P, Castodi A, Fazzi A, Guazzoni C, Rijssenbeek M (2006) A novel position and time sensing active pixel sensor with field-assisted electron collection for charged particle tracking and electron microscopy. Nucl Instrum Methods A 568(1):167

    Article  Google Scholar 

  • Kalogirou SA (2014) Solar energy engineering, 2nd edn. Elsevier

  • Lenert A, Bierman DM, Nam Y, Chan WR, Celanovic I, Soljacic M, Wang EN (2014) A nanophotonic solar thermophotovoltaic device. Nat Nanotechnol 9(2):126

    Article  CAS  Google Scholar 

  • Liu YZ, Moll JL, Spicer WE (1970) Quantum yield of GaAs semitransparent photocathode. Appl Phys Lett 17:60

    Article  CAS  Google Scholar 

  • Liu L, Diao Y, Xia S (2019) High-performance GaAs nanowire cathode for photon-enhanced thermionic emission solar converters. J Mater Sci 54:5605

    Article  CAS  Google Scholar 

  • Reck K, Hansen O (2010) Thermodynamics of photon-enhanced thermionic emission solar cells. Appl Phys Lett 104(2):023902

    Article  Google Scholar 

  • Sahasrabuddhe K, Schwede JW, Bargatin I (2012) A model for emission yield from planar photocathodes based on photon-enhanced thermionic emission or negative-electron-affinity photoemission. J Appl Phys 112:094907

    Article  Google Scholar 

  • Scharber MC, Sariciftci NS (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):929

    Article  Google Scholar 

  • Schwede JW, Bargatin I, Riley DC, Hardin BE, Rosenthal SJ, Sun Y, Schmitt F, Pianetta P, Howe RT, Shen ZX, Melosh NA (2010) Photon-enhanced thermionic emission for solar concentrator systems. Nat Mater 9(9):762

    Article  CAS  Google Scholar 

  • Schwede JW, Sarmiento T, Narasimhan VK, Rosenthal SJ, Riley DC, Schnitt F, Bargatin I, Sahasrabuddhe K, Howe RT, Harris JS, Melosh NA, Shen ZX (2013) Photon-enhanced thermionic emission from heterostructures with low interface recombination. Nat Commun 4:1576

    Article  CAS  Google Scholar 

  • Segev G, Weisman D, Rosenwaks Y, Kribus A (2015) Negative space charge effects in photon-enhanced thermionic emission solar converters. Appl Phys Lett 107(1):013908

    Article  Google Scholar 

  • Snaith HJ (2018) Present status and future prospects of perovskite photovoltaics. Nat Mater 17:372

    Article  CAS  Google Scholar 

  • Su S, Wang Y, Wang J, Xu Z, Chen J (2014) Material optimum choices and parametric design strategies of a photon-enhanced solar cell hybrid system. Sol Energy Mater Sol C 128:112

    Article  CAS  Google Scholar 

  • Sun ML, Chou JP, Gao JF, Cheng Y, Hu A, Tang WC, Zhang G (2018) Exceptional optical absorption of buckled arsenene covering a broad spectral range by molecular doping. ACS Omega 3:8514

    Article  CAS  Google Scholar 

  • Tang W, Yang W, Yang Y, Sun C, Cai Z (2014) GaAs film for photon-enhanced thermionic emission solar harvesters. Mater Sci Semicond Process 25:143

    Article  CAS  Google Scholar 

  • Taylor CR (1983) Maximizing the quantum efficiency of microchannel plate detectors: the collection of photoelectrons from the interchannel web using an electric field. Rev Sci Instrum 54(2):171

    Article  CAS  Google Scholar 

  • Tyagi VV, Kaushik SC, Tyagi SK (2012) Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology. Renew Sustain Energy Rev 16:1383

    Article  Google Scholar 

  • Varpula A, Prunnila M (2012) Diffusion-emission theory of photon enhanced thermionic emission solar energy harvesters. J Appl Phys 112(4):044506

    Article  Google Scholar 

  • Wang Y, Liao T, Zhang Y, Chen X, Su S, Chen J (2016) Effects of nanoscale vacuum gap on photon-enhanced thermionic emission devices. J Appl Phys 119(4):045106

    Article  Google Scholar 

  • Wang K, Fu R, Wang G, Tran HC, Chang BK, Yang L (2017) High-performance photon-enhanced thermionic emission solar energy converters with AlxGa1−xAs∕GaAs cathode under multilevel built-in electric field. Opt Commun 402:85

    Article  CAS  Google Scholar 

  • Yang Y, Yang W, Sun C (2015) Diffusion emission model for solid-state photon-enhanced thermionic emission solar energy converters. Mater Sci Semicond Process 35:120

    Article  Google Scholar 

  • Zhi CY, Bai XD, Wang EG (2005) Synthesis and field-electron-emission behavior of aligned GaAs nanowires. Appl Phys Lett 86(21):213108

    Article  Google Scholar 

  • Zhuravlev AG, Romanov AS, Alperovich VL (2014) Photon-enhanced thermionic emission from p-GaAs with nonequilibrium Cs overlayers. Appl Phys Lett 105(25):251602

    Article  Google Scholar 

  • Zou J, Zhang Y, Peng X, Deng W, Feng L, Chang B (2012) Energy distributions of electrons emitted from reflection-mode Cs-covered GaAs photocathodes. Appl Opt 51(31):7662

    Article  CAS  Google Scholar 

  • Zou J, Ge X, Zhang Y, Deng W, Zhu Z, Wang W, Peng X, Chen Z, Chang B (2016) Negative electron affinity GaAs wire-array photocathodes. Opt Express 24(5):4632

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been partially sponsored by the Qing Lan Project of Jiangsu Province (2017-AD41779), by the Six Talent Peaks Project in Jiangsu Province (2015-XCL-008), by the Fundamental Research Funds for the Central Universities (30916011206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in either personal or financial aspects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, Y., Liu, L. & Xia, S. Photon-enhanced thermionic emission solar energy converters with GaAs wire array cathode under external electric field. Appl Nanosci 10, 807–817 (2020). https://doi.org/10.1007/s13204-019-01156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01156-5

Keywords

Navigation