Skip to main content
Log in

Spatial deformation of nanocellulose hydrogel enhances SERS

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Bacterial cellulose hydrogels containing gold nanoparticles (AuNPs-BC) were prepared using a cost-effective and environment-friendly in situ synthesis method. Well-dispersed AuNPs were grown on the nanofiber surface of the BC hydrogel, forming substrates of surface-enhanced Raman spectroscopy (SERS). Increases in SERS-active sites in the AuNPs-BC hydrogel caused the enhancement of SERS intensity. The enhancement in SERS intensity of 4-fluorobenzenethiol and phenylacetic acid (PAA), used as test analytes, was compared with spatially-un-deformed AuNPs-BC hydrogels, as well as spatially-deformed AuNPs-BC hydrogels in which the BC layers had contracted during drying. Particularly noteworthy was the detection of PAA by the simple contraction of the substrate, despite a low affinity to surface gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh, J.P., Chu, H., Abell, J., Tripp, R.A. & Zhao, Y. Flexible and mechanical strain resistant large area SERS active substrates. Nanoscale 4, 3410–3414 (2012).

    Article  CAS  Google Scholar 

  2. Chang, S., Combs, Z.A., Gupta, M.K., Davis, R. & Tsukruk, V.V. In situ Growth of Silver Nanoparticles in Porous Membranes for Surface-Enhanced Raman Scattering. ACS Applied Materials & Interfaces 2, 3333–3339 (2010).

    Article  CAS  Google Scholar 

  3. Wang, X. et al. Green controllable synthesis of silver nanomaterials on graphene oxide sheets via spontaneous reduction. RSC Advances 2, 3816–3822 (2012).

    Article  CAS  Google Scholar 

  4. Ko, H., Singamaneni, S. & Tsukruk, V.V. Nanostructured Surfaces and Assemblies as SERS Media. Small 4, 1576–1599 (2008).

    Article  CAS  Google Scholar 

  5. Yu, A.M., Liang, Z.J., Cho, J. & Caruso, F. Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Letters 3, 1203–1207 (2003)

    Article  CAS  Google Scholar 

  6. Lu, Y., Liu, G.L. & Lee, L.P. High-density silver nanoparticle film with temperature-controllable inter-particle spacing for a tunable surface enhanced Raman scattering substrate. Nano Letters 5, 5–9 (2005).

    Article  CAS  Google Scholar 

  7. Freeman, R.G. et al. Self-Assembled Metal Colloid Monolayers — an Approach to Sers Substrates. Science 267, 1629–1632 (1995).

    Article  CAS  Google Scholar 

  8. Lo, H.C. et al., Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform. Biosensors and Bioelectronics 26, 2413–2418 (2011).

    Article  CAS  Google Scholar 

  9. Tang, H.B. et al. Arrays of Cone-Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Advanced Functional Materials 22, 218–224 (2012).

    Article  Google Scholar 

  10. Krishna, K.S., Sandeep, C.S.S., Philip, R. & Eswaramoorthy, M. Mixing Does the Magic: A Rapid Synthesis of High Surface Area Noble Metal Nanosponges Showing Broadband Nonlinear Optical Response. ACS Nano 4, 2681–2688 (2010).

    Article  CAS  Google Scholar 

  11. Lee, S. et al. Utilizing 3D SERS Active Volumes in Aligned Carbon Nanotube Scaffold Substrates. Advanced Materials 24, 5261–5266 (2012).

    Article  CAS  Google Scholar 

  12. Ngo, Y.H., Li, D., Simon, G.P. & Garnier, G. Gold Nanoparticle-Paper as a Three-Dimensional Surface Enhanced Raman Scattering Substrate. Langmuir 28, 8782–8790 (2012).

    Article  CAS  Google Scholar 

  13. Tan, E.Z., Yin, P.G., You, T.T., Wang, H. & Guo, L. Three Dimensional Design of Large-Scale TiO2 Nanorods Scaffold Decorated by Silver Nanoparticles as SERS Sensor for Ultrasensitive Malachite Green Detection. ACS Applied Materials & Interfaces 4, 3432–3437 (2012).

    Article  CAS  Google Scholar 

  14. Cai, J., Kimura, S., Wada, M. & Kuga, S. Nanoporous Cellulose as Metal Nanoparticles Support. Biomacromolecules 10, 87–94 (2009).

    Article  CAS  Google Scholar 

  15. Luo, X.G., Liu, S.L., Zhou, J.P. & Zhang, L.N. In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. Journal of Materials Chemistry 19, 3538–3545 (2009).

    Article  CAS  Google Scholar 

  16. Wu, J.J., Zhao, N., Zhang, X.L. & Xu, J. Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19, 1239–1249 (2012).

    Article  CAS  Google Scholar 

  17. Tan, J.J. et al. Controllable Aggregation and Reversible pH Sensitivity of AuNPs Regulated by Carboxymethyl Cellulose. Langmuir 26, 2093–2098 (2010).

    Article  CAS  Google Scholar 

  18. Tokoh, C., Takabe, K., Fujita, M. & Saiki, H. Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5, 249–261 (1998).

    Article  CAS  Google Scholar 

  19. Rani, M.U. & Appaiah, A. Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Annals of Microbiology 61, 781–787 (2011).

    Article  CAS  Google Scholar 

  20. Hofinger, M., Bertholdt, G. & Weuster-Botz, D. Microbial Production of Homogeneously Layered Cellulose Pellicles in a Membrane Bioreactor. Biotechnology and Bioengineering 108, 2237–2240 (2011).

    Article  CAS  Google Scholar 

  21. Olsson, R.T. et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nanotechnology 5, 584–588 (2010).

    Article  CAS  Google Scholar 

  22. Zhang, T.J. et al. Biotemplated Synthesis of Gold Nanoparticle-Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing. Advanced Functional Materials 20, 1152–1160 (2010).

    Article  CAS  Google Scholar 

  23. Vimala, K., Sivudu, K.S., Mohan, Y.M., Sreedhar, B. & Raju, K.M. Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly (acrylamide) and carbohydrates: A rational methodology for antibacterial application. Carbohydrate Polymers 75, 463–471 (2009).

    Article  CAS  Google Scholar 

  24. Yang, G., Xie, J.J., Deng, Y.X., Bian, Y.G. & Hong, F. Hydrothermal synthesis of bacterial cellulose/AgNPs composite: A “green” route for antibacterial application. Carbohydrate Polymers 87, 2482–2487 (2012).

    Article  CAS  Google Scholar 

  25. Doering, W.E. & Nie, S.M. Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B 106, 311–317 (2002).

    Article  CAS  Google Scholar 

  26. Moskovits, M. & Jeong, D.H. Engineering nanostructures for giant optical fields. Chemical Physics Letters 397, 91–95 (2004).

    Article  CAS  Google Scholar 

  27. Badawi, H.M. & Forner, W. Analysis of the infrared and Raman spectra of phenylacetic acid and mandelic (2-hydroxy-2-phenylacetic) acid. Spectrochimica Acta Part A 78, 1162–1167 (2011).

    Article  Google Scholar 

  28. Suh, J.S., Moskovits, M. & Shakhesemampour, J. Photochemical Decomposition at Colloid Surfaces. The Journal of Physical Chemistry 97, 1678–1683 (1993).

    Article  CAS  Google Scholar 

  29. Jeong, D.H., Suh, J.S. & Moskovits, M. Photochemical reactions of phenazine and acridine adsorbed on silver colloid surfaces. The Journal of Physical Chemistry B 104, 7462–7467 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinho Hyun.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, M., Chang, H., Jeong, D.H. et al. Spatial deformation of nanocellulose hydrogel enhances SERS. BioChip J 7, 234–241 (2013). https://doi.org/10.1007/s13206-013-7306-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-013-7306-5

Keywords

Navigation