Skip to main content

Advertisement

Log in

Comparison of bacteriocins production from Enterococcus faecium strains in cheese whey and optimised commercial MRS medium

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The production of bacteriocins from cheap substrates could be useful for many food industrial applications. This study aimed at determining the conditions needed for optimal production of enterocins SD1, SD2, SD3 and SD4 secreted by Enterococcus faecium strains SD1, SD2, SD3 and SD4, respectively. To our knowledge, this is the first use of cheese whey—a low-cost milk by-product—as a substrate for bacteriocin production by E. faecium; skimmed milk and MRS broths were used as reference media. This cheese manufacturing residue proved to be a promising substrate for the production of bacteriocins. However, the levels of secreted antimicrobial compounds were lower than those achieved by E. faecium strains in MRS broth. Bacteriocin production was affected strongly by physical and chemical factors such as growth temperature, time of incubation, pH, and the chemical composition of the culture medium. The optimal temperature and time of incubation supporting the highest bacteriocin production was determined for each strain. Different types, sources and amounts of organic nitrogen, sugar, and inorganic salts played an essential role in bacteriocin secretion. E. faecium strains SD1 and SD2—producing high bacteriocin levels both in cheese whey and skimmed milk—could be of great interest for potential applications in cheese-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aasen IM, Moreto T, Katla T, Axelsson L, Storro I (2000) Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687. Appl Microbiol Biotechnol 53(2):159–166

    Article  CAS  PubMed  Google Scholar 

  • Achemchem F, Martínez-Bueno M, Abrini J, Valdivia E, Maqueda M (2005) Enterococcus faecium F58, a bacteriocinogenic strain naturally occurring in Jben, a soft, farmhouse goat’s cheese made in Morocco. J Appl Microbiol 99(1):141–150

    Article  CAS  PubMed  Google Scholar 

  • Audisto MC, Oliver G, Apella MC (2001) Effect of different complex carbon sources on growth and bacteriocin synthesis of Enterococcus faecium. Int J Food Microbiol 63(3):235–241

    Article  Google Scholar 

  • Biswas SR, Ray P, Johnson MC, Ray B (1991) Influence of growth conditions on the production of a bacteriocin, pediocin AcH by Pediococcus acidilactici H. Appl Environ Microb 57(4):1265–1267

    CAS  Google Scholar 

  • Cladera-Olivera F, Caron GR, Brandelli A (2004) Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochem Eng J 21:53–58

    Article  CAS  Google Scholar 

  • Cota-Navarro CB, Carrillo-Reyes J, Davila-Vazquez G, Alatriste-Mondragón F, Razo-Flores E (2011) Continuous hydrogen and methane production in a two-stage cheese whey fermentation system. Water Sci Technol 64:367–374

    Article  CAS  PubMed  Google Scholar 

  • Daeschel MA, McKeney MC, McDonald LC (1990) Bacteriocidal activity of Lactobacillus plantarum C-11. Food Microbiol 7(2):91–98

    Article  CAS  Google Scholar 

  • De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23(1):130–135

    Article  Google Scholar 

  • De Vuyst L, Vandamme E (1994) Bacteriocins of lactic acid bacteria. Blackie. London

    Book  Google Scholar 

  • De Vuyst L, Callewaert R, Crabbe K (1996) Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology 142:817–827

    Article  Google Scholar 

  • De Vuyst L, Foulquié-Moreno MR, Revets H (2003) Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. Int J Food Microbiol 84(3):299–318

    Article  PubMed  Google Scholar 

  • Dragone G, Mussatto SI, Almeida e Silva JB, Teixeira JA (2011) Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder. Biomass Bioenerg 35:1977–1982

    Article  CAS  Google Scholar 

  • Favaro L, Basaglia M, Casella S (2012a) Processing wheat bran into ethanol using mild treatments and highly fermentative yeasts. Biomass Bioenerg 46:605–617

    Article  CAS  Google Scholar 

  • Favaro L, Jooste T, Basaglia M, Rose SH, Saayman M, Görgens JF, Casella S, van Zyl WH (2012b) Codon-optimized glucoamylase sGAI of Aspergillus awamori improves starch utilization in an industrial yeast. Appl Microbiol Biotechnol 95:957–968

    Article  CAS  PubMed  Google Scholar 

  • Favaro L, Basaglia M, van Zyl WH, Casella S (2013) Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates. Appl Energ 102:170–178

    Article  CAS  Google Scholar 

  • Herranz C, Martinez JM, Rodriguez JM, Hernandez PE, Cintas LM (2001) Optimization of enterocin P production by batch fermentation of Enterococcus faecium P13 at constant pH. Appl Microbiol Biotechnol 56(3–4):378–383

    Article  CAS  PubMed  Google Scholar 

  • Javed A, Masud T, ul Ain Q, Imran M, Maqsood S (2011) Enterocins of Enterococcus faecium, emerging natural food preservatives. Ann Microbiol 61(4):699–708

    Article  Google Scholar 

  • Jennes W, Dicks LMT, Verwoerd DJ (2000) Enterocin 012, a bacteriocin produced by Enterococcus gallinarum isolated from the intestinal tract of ostrich. J Appl Microbiol 88(2):349–357

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Diaz R, Rios-Sanchez RM, Desmazeaud M, Ruiz-Barrba JL, Piard JC (1993) Plantaricin S and T, two new bacteriocins produced by Lactobacillus plantarum LPCO10 isolated from a green olive fermentation. Appl Environ Microb 59(5):1416–1424

    CAS  Google Scholar 

  • Joerger MC, Klaenhammer TR (1986) Characterization and purification of helveticin J and evidence for chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. J Bacteriol 167(2):439–446

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kanmani P, Satishkumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V (2011) The role of environmental factors and medium composition on bacteriocin productionby an aquaculture probiotic Enterococcus faecium MC13 isolated from fish intestine. Korean J Chem Eng 28(3):860–866

    Article  CAS  Google Scholar 

  • Keymanesh K, Soltani S, Sardari S (2009) Application of antimicrobial peptides in agriculture and food industry. World J Microbiol Biotechnol 25:933–944

    Article  Google Scholar 

  • Knoetze H, Todorov SD, Dicks LMT (2008) A class IIa peptide from Enterococcus mundtii inhibits bacteria associated with otitis media. Int J Antimicrob Agents 31(3):228–234

    Article  CAS  PubMed  Google Scholar 

  • Leães FL, Vanin NG, Sant’Anna V, Brandelli A (2011) Use of byproducts of food industry for production of antimicrobial activity by Bacillus sp. P11. Food Bioprocess Technol 4:822–828

    Article  Google Scholar 

  • Leroy F, De Vuyst L (2003) A combined model to predict the functionality of the bacteriocin-producing Lactobacillus sakei strain CTC494. Appl Environ Microbiol 69(2):1093–1099

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leroy F, Foulquié Moreno MR, De Vuyst L (2003) Enterococcus faecium RZS C5, an interesting bacteriocin producer to be used as a co-culture in food fermentation. Int J Food Microbiol 88(2–3):235–240

    Article  CAS  PubMed  Google Scholar 

  • Losteinkit C, Uchiyama K, Ochi S, Takaoka T, Nagahisa K, Shioya S (2001) Characterization of bacteriocin N15 produced by Enterococcus faecium N15 and cloning of the related genes. J Biosci Bioeng 91(4):390–395

    CAS  PubMed  Google Scholar 

  • Matsusaki H, Endo N, Sonomoto K, Ishizaki A (1996) Lantibiotic nisin Z fermentative production by Lactococcus lactis IO-1: relationship between production of the lantibiotic and lactate and cell growth. Appl Microbiol Biotechnol 45(1–2):36–40

    Article  CAS  PubMed  Google Scholar 

  • Mauriello G, Aponte M, Andolfi R, Moschetti G, Villani F (1999) Spray-drying of bacteriocin-producting lactic acid bacteria. J Food Prot 62(7):773–777

    CAS  PubMed  Google Scholar 

  • Mirhosseini M, Emtiazi G (2011) Optimisation of enterocin A production on a whey-based substrate. World Appl Sci J 14(10):1493–1499

    CAS  Google Scholar 

  • Moreno MRF, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L (2003) Isolation and biochemical characterisation of enterocins produced by enterococci from different sources. J Appl Microbiol 94(2):214–229

    Article  Google Scholar 

  • Mørtvedt-Abildgaard CI, Nissen-Meyer J, Jelle B, Grenov B, Skaugen M, Nes IF (1995) Production and pH-dependent bacteriocidal activity of lactocin S, a lantibiotic from Lactobacillus sake L45. Appl Environ Microbiol 61(1):175–179

    Google Scholar 

  • Motta AS, Brandelli A (2003) Influence of growth conditions on bacteriocin production by Brevibacterium linens. Appl Microbiol Biotechnol 62(2–3):163–167

    Article  PubMed  Google Scholar 

  • Nel HA, Bauer R, Vandamme EJ, Dicks LMT (2001) Growth optimisation of Pediococcus damnosus NCFB 1832 and the influence of pH and nutrients on the production of pediocin PD-1. J Appl Microbiol 91(6):1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Povolo S, Toffano P, Basaglia M, Casella S (2010) Polyhydroxyalkanoates production by engineered Cupravidus necator from waste material containing lactose. Bioresour Technol 101:7902–7907

    Article  CAS  PubMed  Google Scholar 

  • Prazeres AR, Carvalho F, Rivas J (2012) Cheese whey management: a review. J Environ Manage 110:48–68

    Article  CAS  PubMed  Google Scholar 

  • Rødsrud G, Lersch M, Sjöde A (2012) History and future of world’s most advanced biorefinery in operation. Biomass Bioenerg 46:46–59

    Article  Google Scholar 

  • Saavedra L, Taranto MP, Sesma F, de Valdez GF (2003) Home-made traditional cheeses for the isolation of probiotic Enterococcus faecium strains. Int J Food Microbiol 88(2–3):241–245

    Article  CAS  PubMed  Google Scholar 

  • Schirru S, Todorov SD, Favaro L, Mangia NP, Basaglia M, Casella S, Comunian R, de Melo Franco BDG, Deiana P (2012) Sardinian goat’s milk as source of bacteriocinogenic potential protective cultures. Food Control 25(1):309–320

    Article  CAS  Google Scholar 

  • Scott E, Peter F, Sanders J (2007) Biomass in the manufacture of industrial products-the use of proteins and amino acids. Appl Microbiol Biotechnol 75(4):751–762

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sparo MD, Castro MS, Andino PJ, Lavigne MV, Ceriani C, Gutiérrez GL, Fernández MM, De Marzi MC, Malchiodi EL, Manghi MA (2006) Partial characterization of enterocin MR99 from a corn silage isolate of Enterococcus faecalis. J Appl Microbiol 100(1):123–134

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD (2008) Bacteriocin production by Lactobacillus plantarum AMA-K isolated from Amasi, a Zimbabwean fermented milk product and study of the adsorption of bacteriocin AMA-K to Listeria sp. Braz J Microbiol 39(1):178–187

    Article  PubMed  Google Scholar 

  • Todorov SD (2009) Bacteriocins from Lactobacillus plantarum - production, genetic organization and mode of action. A review. Braz J Microbiol 40(2):209–221

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD (2010) Diversity of bacteriocinogenic lactic acid bacteria isolated from boza, a cereal-based fermented beverage from Bulgaria. Food Control 21(7):1011–1021

    Article  CAS  Google Scholar 

  • Todorov SD, Gotcheva B, Dousset X, Onno B, Ivanova I (2000) Influence of growth medium on bacteriocin production in Lactobacillus plantarum ST31. Biotechnol Biotechnol Equipment 14(1):50–55

    CAS  Google Scholar 

  • Todorov SD, Dicks LMT (2004) Effect of medium components on bacteriocin production by Lactobacillus pentosus ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soy flour. World J Microb Biotechnol 20(6):643–650

    Article  CAS  Google Scholar 

  • Todorov SD, Dicks LMT (2005a) Optimization of bacteriocin ST311LD production by Enterococcus faecium ST311LD, isolated from spoiled black olives. J Microbiol 43(4):370–374

    CAS  PubMed  Google Scholar 

  • Todorov SD, Dicks LMT (2005b) Effect of growth medium on bacteriocin production by Lactobacillus plantarum ST194BZ, a strain isolated from boza. Food Technol Biotechnol 43(2):165–173

    CAS  Google Scholar 

  • Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LMT (2005) An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int J Antimicrob Agents 25(6):508–513

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Dicks LMT (2007) Bacteriocin production by Lactobacillus pentosus ST712BZ isolated from boza. Braz J Microbiol 38:166–172

    Article  Google Scholar 

  • Todorov SD, Favaro L, Gibbs P, Vaz-Velho M (2012) Enterococcus faecium isolated from Lombo, Portuguese traditional sausage: characterization of antibacterial compounds and study of the factors affecting bacteriocin production. Beneficial Microbes 3(4):319–330

    Article  CAS  PubMed  Google Scholar 

  • Todorov SD, Vaz-Velho M, de Melo Franco BDG, Holzapfel WH (2013) Partial characterization of bacteriocins produced by three strains of Lactobacillus sakei, isolated from salpicao, a fermented meat product from North-West of Portugal. Food Control 30(1):111–121

    Article  CAS  Google Scholar 

  • Verellen TLJ, Bruggeman G, Van Reenen CA, Dicks LMT, Vandamme EJ (1998) Fermentation optimisation of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum 423. J Ferment Bioeng 86(2):174–179

    Article  CAS  Google Scholar 

  • Vignolo GM, Dekairuz MN, Holgado AAPD, Oliver G (1995) Influence of growth conditions on the production of lactacin-705, a bacteriocin produced by Lactobacillus casei CRL-705. J Appl Bacteriol 78(1):5–10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Maria Teresa Destro and Dr. Eb Chiarini from University of São Paulo (Brazil) for providing the Listeria monocytogenes used in this study, and to Dr. Antonio Paba and Dr. Elisabetta Daga from Agris Sardegna (Sassari, Italy) for the support and their valuable suggestions. L.F. was a recipient of a “Assegno di ricerca Senior” grant from the University of Padova (PD, Italy), S.T. was supported by a “visiting professor grants” from CNPq and CAPES, Brasilia (DF, Brazil). This project was partially financed by Progetto di Ateneo 2010 - prot. CPDA102570 (University of Padova, Italy) and by the UE-ANIMPOL project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Schirru.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schirru, S., Favaro, L., Mangia, N.P. et al. Comparison of bacteriocins production from Enterococcus faecium strains in cheese whey and optimised commercial MRS medium. Ann Microbiol 64, 321–331 (2014). https://doi.org/10.1007/s13213-013-0667-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0667-0

Keywords

Navigation